Reference solution ================== .. image:: images/10000000000005D000000002FCD2737BD3670FFA.jpg :width: 6.4819in :height: 0.0161in .. _RefImage_10000000000005D000000002FCD2737BD3670FFA.jpg: The analytical SIF solution for this crack geometry (Figure `1) <#page4>`_is given by Eshraghi *et al.* [:ref:`1 <1>`]: :math:`{K}_{I}=\frac{2}{\pi }\sigma \sqrt{\mathit{\pi a}}F\left(\frac{a}{b}\right)` Where: :math:`F\left(\frac{a}{b}\right)=\frac{1-0.5\frac{a}{b}+0.148{\left(\frac{a}{b}\right)}^{3}}{\sqrt{1-\frac{a}{b}}}` And the energy release rate for mode I pure reads: :math:`J=\frac{{K}_{I}^{2}\times \left(1-{v}^{2}\right)}{E}` In this calculation, the input parameters are: a = 2 mm, b = 10 mm, which gives the values of J = 0.118 N/mm. [:ref:`1 <1>`] I. Eshraghi and N. Soltani. Stress intensity factor calculation for internal circumferential cracks in functionally graded cylinders using the weight function approach. *Engineering Fracture Mechanics*, *134*: 1-19, 2015.