Reference problem ===================== Geometry --------- A torsional test is reproduced on a hollow cylinder subjected to internal :math:`{P}_{i}` and external confinement pressures :math:`{P}_{e}`, to a vertical force :math:`F` and to a torsional moment :math:`M`. This test is schematized by a cubic sample (a material point) subjected to confinement stresses :math:`{\sigma }_{z}`, :math:`{\sigma }_{r}` and :math:`{\sigma }_{\theta }`, and to a shear deformation :math:`{\epsilon }_{z\theta }=M(t)` (**Figure**). If :math:`{P}_{i}={P}_{e}={\sigma }_{0}` and :math:`F=\frac{2{\sigma }_{0}}{\pi }`, the following confinement values are obtained: * :math:`{\sigma }_{\theta }={\sigma }_{r}={\sigma }_{0}` * :math:`{\sigma }_{z}=3{\sigma }_{0}` We then have the following values of the main constraints: * :math:`{\sigma }_{1}=2{\sigma }_{0}+\mid {\sigma }_{z\theta }\mid` * :math:`{\sigma }_{2}={\sigma }_{0}` * :math:`{\sigma }_{3}=2{\sigma }_{0}-\mid {\sigma }_{z\theta }\mid` But above all, the main axes rotate by an angle :math:`\alpha` equal to [:ref:` **1** < **1** >`]: :math:`\alpha (t)=\frac{1}{2}\mathrm{arctan}\left(\frac{2{\sigma }_{z\theta }(t)}{{\sigma }_{z}-{\sigma }_{\theta }}\right)=\frac{1}{2}\mathrm{arctan}\left(\frac{{\sigma }_{z\theta }(t)}{{\sigma }_{0}}\right)` .. image:: images/100000000000019B000000C842D8CF86D4113104.png :width: 4.2811in :height: 2.0835in .. _RefImage_100000000000019B000000C842D8CF86D4113104.png: Figure 1.1-a: Schematic diagram of the torsional test on a hollow cylinder Properties of the sample --------------------------- The elastic parameters are: * the isotropic compressibility module: :math:`K=\mathrm{516,2}\mathit{MPa}` * the shear modulus: :math:`\mu =\mathrm{238,2}\mathit{MPa}` The parameters of the Mohr-Coulomb law are: * the angle of friction: :math:`\phi =33°` * the characteristic angle: :math:`\Psi =27°` * cohesion: :math:`{c}_{0}=1\mathit{kPa}` Boundary conditions and loads ------------------------------------- The torsional test presented here is carried out on a hardware point with the SIMU_POINT_MAT command. We are taking a :math:`{\sigma }_{0}=-50\mathit{kPa}` lockdown pressure. The constraints imposed are therefore as follows: * :math:`{\sigma }_{\mathit{xx}}={\sigma }_{\mathit{yy}}=-50\mathit{kPa}` * :math:`{\sigma }_{\mathit{zz}}=-150\mathit{kPa}` The imposed shear deformation :math:`{\epsilon }_{\mathit{yz}}` varies linearly between :math:`t=0` and :math:`100\mathit{sec}` from :math:`0` to :math:`\mathrm{0,01}\text{\%}` in :math:`N=10` steps of time.