Reference problem ===================== Geometry --------- The cyclic shear test is carried out on a single Gauss point. The test is therefore checked in its entirety in terms of constraints and deformations imposed. Material properties ---------------------- Hujeux and Iwan models of behavior ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The isotropic elastic properties of the material are :math:`E=619.33` MPa and :math:`\nu =0.3`. The anelastic parameters specific to the Hujeux model (modeling A) are: * :math:`n=0.4`, :math:`\mathrm{\beta }=24`, :math:`b=0.2`, :math:`d=2.5`. * :math:`\mathrm{\varphi }=33°`, :math:`\mathrm{\psi }=33°`, :math:`{P}_{c0}=-1` MPa, :math:`{P}_{\mathit{ref}}=-1` MPa * :math:`{a}_{\mathit{cyc}}=1\times10^{-4}`, :math:`{a}_{\mathit{mon}}=8\times10^{-3}` * :math:`{c}_{\mathit{cyc}}=9\times10^{-2}`, :math:`{c}_{\mathit{mon}}=1.8\times10^{-1}` * :math:`{r}_{\mathit{ela}}^{d}=5\times10^{-3}`, :math:`{r}_{\mathit{ela}}^{i}=1\times10^{-3}`, :math:`{r}_{\mathit{ela}}^{d,c}=5\times10^{-3}`, :math:`{r}_{\mathit{ela}}^{i,c}=1\times10^{-3}` * :math:`{r}_{\mathit{hys}}=5\times10^{-2}`, :math:`{r}_{\mathit{mob}}=9\times10^{-1}` * :math:`{x}_{m}=1`, :math:`\alpha=1` The anelastic parameters of the Iwan model (modeling B) are for their part :math:`\gamma_{\mathrm{ref}}=2\times10^{-4}` and :math:`n=0.78`. Behaviour model CSSM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The parameters specific to the model CSSM [:ref:`r7.01.44 `] are grouped together in the :numref:`v6.04.160-table_parametres_CSSM` concerning the C modeling. .. _v6.04.160-table_parametres_CSSM: .. list-table:: Paramètres du modèle CSSM utilisés dans la modélisation C. *-**Intervention** - **Appellation** - **Definition** - **Symbol** - **Value** * - Elasticity - | *BulkModulus* | *ShearModulus* | *ShearModulusRatio* - | Total compressibility module | Total shear modulus | Ratio of the shear modulus of component 1 to the total shear modulus - |:math: `K` |:math: `\ mu` |:math: `\ rho` - | 516 MPa | 238 MPa | 0.1 * - Component 1 - | *critstateSlope* | *initCritPress* | *IncoplastIndex* | *IsoHardRatio* | *isoHardIndex* - | Critical state slope | Initial critical pressure | Plastic incompressibility index | Homothetic reduction ratio of the initial elasticity domain | Hardening index by homothetic enlargement of the initial elasticity domain - |:math: `M` |:math: `p_ {c0} ` |:math: `\ beta` |:math: `\ eta` |:math: `\ omega` - |:math: `1.38` |:math: `100` kPa |:math: `30` |:math: `0.99` |:math: `32` * - Component 2 - | *HypDistortion* | *HyperExponent* | *miNcritPress* - | Reference distortion of the "modified hyperbolic" relationship | Curvature parameter for the "modified hyperbolic" relationship | Minimum pressure at which the critical state is attainable - |:math: `\ gamma_ {\ mathrm {hyp}}` |:math: `n_ {\ mathrm {hyp}} ` |:math: `C` - |:math: `2.10^ {-4} ` |:math: `0.78` |:math: `448` kPa Boundary conditions and loads ------------------------------------- The use of the SIMU_POINT_MAT command makes it possible to directly impose a field of deformations and/or constraints. A zero evolution during loading is imposed for the following components of the stress and strain tensors: * :math:`{\mathrm{d}\sigma}_{xx}={\mathrm{d}\sigma}_{yy}={\mathrm{d}\sigma}_{zz}=0` * :math:`{\mathrm{d}\varepsilon}_{yz}={\mathrm{d}\varepsilon}_{zx}=0` We impose the evolution of :numref:`v6.04.207-image_chargement` for the shear stress :math:`\sigma_{xy}`: .. _v6.04.207-image_chargement: .. figure:: images/1000000000000254000001A800AC136C4523B6E1.png :align: center :width: 400 Imposed load schedule for constraint component :math:`\sigma_{xy}`. The evolution with micro-discharges is defined by the function F 1, the one without microdischarge by the function F 2. The validation is carried out by comparison with the solution obtained for the loading path without the micro-discharges. Initial conditions -------------------- The initial stress state is isotropic and corresponds to a pressure equal to :math:`50` kPa.