Reference problem ===================== Geometry --------- We consider an element as a material point. Material properties ---------------------- Hujeux and Iwan models of behavior ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The isotropic elastic properties of the material are :math:`E=619.33` MPa and :math:`\nu =0.3`. The anelastic parameters specific to the Hujeux model (modeling A) are: * :math:`n=0.4`, :math:`\mathrm{\beta }=24`, :math:`b=0.2`, :math:`d=2.5`. * :math:`\mathrm{\varphi }=33°`, :math:`\mathrm{\psi }=33°`, :math:`{P}_{c0}=-1` MPa, :math:`{P}_{\mathit{ref}}=-1` MPa * :math:`{a}_{\mathit{cyc}}=1\times10^{-4}`, :math:`{a}_{\mathit{mon}}=8\times10^{-3}` * :math:`{c}_{\mathit{cyc}}=1\times10^{-1}`, :math:`{c}_{\mathit{mon}}=2\times10^{-1}` * :math:`{r}_{\mathit{ela}}^{d}=5\times10^{-3}`, :math:`{r}_{\mathit{ela}}^{i}=1\times10^{-3}`, :math:`{r}_{\mathit{ela}}^{d,c}=5\times10^{-3}`, :math:`{r}_{\mathit{ela}}^{i,c}=1\times10^{-3}` * :math:`{r}_{\mathit{hys}}=5\times10^{-2}`, :math:`{r}_{\mathit{mob}}=9\times10^{-1}` * :math:`{x}_{m}=1`, :math:`\alpha=1` The anelastic parameters of the Iwan model (modeling B) are for their part :math:`\gamma_{\mathrm{ref}}=2\times10^{-4}` and :math:`n=0.78`. **Note:** Using the *CALC_ESSAI_GEOMECA tool,* we are able to compare the behavior curves for the two models in terms of reducing the normalized secant shear modulus and reduced depreciation (see :numref:`v6.04.205-module_secant_normalise` and :numref:`v6.04.205-amortissement_reduit`). .. _v6.04.205-module_secant_normalise: .. figure:: images/100002010000032000000258B5CDD4F1675D5855.png :align: center :width: 400 Predictions of the secant shear modulus normalized with distortion by Hujeux and Iwan models. .. _v6.04.205-amortissement_reduit: .. figure:: images/1000020100000320000002589A53DF01E1E9C3F4.png :align: center :width: 400 Predictions of reduced damping with distortion by Hujeux and Iwan models. Behaviour model CSSM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The parameters specific to the model CSSM [:ref:`r7.01.44 `] are grouped together in the :numref:`v6.04.160-table_parametres_CSSM` concerning the C modeling. .. _v6.04.160-table_parametres_CSSM: .. list-table:: Paramètres du modèle CSSM utilisés dans la modélisation C. *-**Intervention** - **Appellation** - **Definition** - **Symbol** - **Value** * - Elasticity - | *BulkModulus* | *ShearModulus* | *ShearModulusRatio* - | Total compressibility module | Total shear modulus | Ratio of the shear modulus of component 1 to the total shear modulus - |:math: `K` |:math: `\ mu` |:math: `\ rho` - | 516 MPa | 238 MPa | 0.1 * - Component 1 - | *critstateSlope* | *initCritPress* | *IncoplastIndex* | *IsoHardRatio* | *isoHardIndex* - | Critical state slope | Initial critical pressure | Plastic incompressibility index | Homothetic reduction ratio of the initial elasticity domain | Hardening index by homothetic enlargement of the initial elasticity domain - |:math: `M` |:math: `p_ {c0} ` |:math: `\ beta` |:math: `\ eta` |:math: `\ omega` - |:math: `1.38` |:math: `100` kPa |:math: `30` |:math: `0.99` |:math: `32` * - Component 2 - | *HypDistortion* | *HyperExponent* | *miNcritPress* - | Reference distortion of the "modified hyperbolic" relationship | Curvature parameter for the "modified hyperbolic" relationship | Minimum pressure at which the critical state is attainable - |:math: `\ gamma_ {\ mathrm {hyp}}` |:math: `n_ {\ mathrm {hyp}} ` |:math: `C` - |:math: `2.10^ {-4} ` |:math: `0.78` |:math: `448` kPa Boundary conditions and loads ------------------------------------- As a reminder, the use of the SIMU_POINT_MAT command makes it possible to directly impose a field of deformations and/or constraints. A zero evolution during loading is imposed for the following components of the stress and strain tensors: * :math:`{\mathrm{d}\sigma}_{xx}={\mathrm{d}\sigma}_{yy}={\mathrm{d}\sigma}_{zz}=0` * :math:`{\mathrm{d}\varepsilon}_{yz}={\mathrm{d}\varepsilon}_{zx}=0` The evolution of :numref:`v6.04.205-image_chargement` is imposed for :math:`\varepsilon_{xy}` shear deformations: .. _v6.04.205-image_chargement: .. figure:: images/image_chargement.png :align: center :width: 400 Imposed loading chronology for the :math:`\varepsilon_{xy}` (standardized) deformation component. Several calculations are carried out by varying the amplitude of deformations according to the values :math:`\left\{2\times10^{-5},2\times10^{-4},2\times10^{-3}\right\}`. Initial conditions -------------------- The initial stress state is isotropic and corresponds to a pressure equal to :math:`50` kPa.