1. Reference problem#

1.1. Geometry#
The cube is in space \([0.\mathrm{,1}\mathrm{.}]\times [0.\mathrm{,1}\mathrm{.}]\times [0.\mathrm{,1}\mathrm{.}]\).
Coordinates of points \((m)\):
\(A:(0.,0.,0.)\)
\(G:(1.,1.,1.)\)
Cube geometry
\(L=1\)
1.2. Material properties#
Elastic
\(E=200.0\times {10}^{3}\mathrm{Pa}\) Young’s module
\(\nu =0.3\) Poisson’s ratio
Lemaitre (modeling A)
\(n=10.8\); \(\frac{1}{K}=6.9\times {10}^{-4}\); \(\frac{1}{m}=0.102\)
Taheri (B modeling)
\({R}_{0}=0.001\)
\(\alpha =0.\)
\(m=1.\)
\(A=0.\)
\(b=0.\)
\({C}_{1}=0.\)
\({C}_{\infty }=0.\)
\(S=900.\)
Taheri (C modeling)
\({R}_{0}=72.\)
\(\mathrm{\alpha }=0.3\)
\(m=0.1\)
\(A=312.\)
\(b=30.\)
\({C}_{1}=0.\)
\({C}_{\mathrm{\infty }}=0.065\)
\(S=450.\)
1.3. Boundary conditions and loads#
1.3.1. A and B models#
Imposed displacement \((m)\):
side \(\mathit{ABCD}\): \(\mathit{DZ}=0\)
side \(\mathit{AEHD}\): \(\mathit{DY}=0\)
side \(\mathit{BFGC}\): \(\mathit{DY}=0.5\)
side \(\mathit{ABFE}\): \(\mathit{DX}=0\)
The displacement \(\mathit{DY}\) imposed on face \(\mathit{BFGC}\) varies progressively according to the function shown in the figure below.

1.3.2. C modeling#
Imposed displacement \((m)\):
side \(\mathit{ABCD}\): \(\mathit{DZ}=0\)
side \(\mathit{AEHD}\): \(\mathit{DY}=0\)
side \(\mathit{ABFE}\): \(\mathit{DX}=0\)
Pressure imposed \((\mathit{Pa})\):
side \(\mathit{BFGC}\): \(\mathit{PRES}=-520\)
The multiplier function of the pressure imposed on face \(\mathit{BFGC}\) as a function of time is represented in the figure below.
