Reference problem ==== Geometry ---- The crack is circular (penny shaped crack) with radius :math:`a=\mathrm{0,2}m` in the :math:`\mathit{OXY}` plane. The side of the cube is :math:`L=2m=10a` long. Thus, it is considered that the crack is in an infinite medium. .. image:: images/100000000000034E000002C1E48DED210B8710B1.png :width: 4.3102in :height: 3.5909in .. _RefImage_100000000000034E000002C1E48DED210B8710B1.png: **Figure** 1.1-1 **: geometry** of the cracked cube 2222 Material properties ---- We consider a homogeneous isotropic elastic linear material whose characteristics are the following: * Young's module :math:`E=200000\mathit{MPa}`, * Poisson's ratio :math:`\nu \mathrm{=}\mathrm{0,3}`. Boundary conditions and loads ---- Given the symmetries of the structure, the crack, and the loads, only half of the structure is modeled: half-space such as :math:`Y>0`. Symmetry conditions are therefore applied to the face in :math:`Y\mathrm{=}0`: on this face, the following movement :math:`Y` is blocked. The structure is subject to a :math:`{\sigma }_{\mathit{xx}}\mathrm{=}1\mathit{MPa}` constraint. The local coordinate system :math:`(x,y,z)` is obtained by rotating an angle :math:`\alpha \mathrm{=}\pi \mathrm{/}4` around the axis :math:`\mathit{OY}`. .. image:: images/10000000000002B20000022EE428EC6E1D6BBC34.png :width: 4.3311in :height: 3.389in .. _RefImage_10000000000002B20000022EE428EC6E1D6BBC34.png: **Figure** 1.3-1 **: Constraints in the global coordinate system** .. image:: images/100000000000015B000000E8C71967D18D36A085.png :width: 2.952in :height: 1.9736in .. _RefImage_100000000000015B000000E8C71967D18D36A085.png: **Figure** 1.3-2 **: Local location** So, we have: on the upper side: * :math:`{\sigma }_{\mathit{ZZ}}=\sigma {\mathrm{sin}}^{2}(\alpha )` * :math:`{\sigma }_{\mathit{ZX}}=\sigma \mathrm{cos}(\alpha )\mathrm{sin}(\alpha )` on the underside: * :math:`{\sigma }_{\mathit{ZZ}}\mathrm{=}\mathrm{-}\sigma {\mathrm{sin}}^{2}(\alpha )` * :math:`{\sigma }_{\mathit{ZX}}\mathrm{=}\mathrm{-}\sigma \mathrm{sin}(\alpha )\mathrm{cos}(\alpha )` on the right side face: * :math:`{\sigma }_{\mathit{XX}}\mathrm{=}\sigma {\mathrm{cos}}^{2}(\alpha )` * :math:`{\sigma }_{\mathit{XZ}}\mathrm{=}\sigma \mathrm{cos}(\alpha )\mathrm{sin}(\alpha )` on the left side face: * :math:`{\sigma }_{\mathit{XX}}\mathrm{=}\mathrm{-}\sigma {\mathrm{cos}}^{2}(\alpha )` * :math:`{\sigma }_{\mathit{XZ}}=-\sigma \mathrm{cos}(\alpha )\mathrm{sin}(\alpha )` In order to block rigid body modes, the point :math:`\mathit{D1}` :math:`(L\mathrm{/}\mathrm{2,0}\mathrm{,0})` is blocked following :math:`X` and :math:`Z` and the point :math:`\mathit{D2}` :math:`(\mathrm{-}L\mathrm{/}\mathrm{2,0}\mathrm{,0})` is blocked following :math:`Z`. .. image:: images/10000000000002C200000249CE148B0A9575D322.png :width: 3.6772in :height: 3.0472in .. _RefImage_10000000000002C200000249CE148B0A9575D322.png: **Figure** 1.3-3 **: Blocking rigid modes**