1. Reference problem#

1.1. Geometry#

It is a cube with 8 nodes, where three faces have a zero normal displacement and the three opposite faces have an imposed and identical normal displacement.

The cube has a side length of \(1\mathit{mm}\). In modeling A, the cube is oriented according to the coordinate system \(\mathit{Oxyz}\).

Modeling A

_images/Shape1.gif

\({U}_{2}\mathrm{=}{U}_{1}\mathrm{=}{U}_{3}\)

1.2. Material properties#

To test the irreversible evolution of mechanical characteristics with temperature, a decreasing temperature field is applied. Some variables depend on temperature, others on drying. Finally, a non-zero desiccation shrinkage coefficient, equal to the thermal expansion coefficient, is applied to test « computer » operation. The thermal deformations will thus be equal and opposite to the deformations due to desiccation shrinkage. These dependencies only occur for purely computer checks; the mechanical characteristics can be considered to be constant.

For the usual linear mechanical characteristics:

Young’s module:

\(E\mathrm{=}32000\mathit{MPa}\)

from

\(0°C\) to \(20°C\)

\(E\mathrm{=}15000\mathit{MPa}\)

to

\(400°C\) (linear decay)

\(E\mathrm{=}5000\mathit{MPa}\)

to

\(800°C\) (linear decay)

Poisson’s ratio:

\(\nu \mathrm{=}0.18\)

Thermal expansion coefficient:

\(a\mathrm{=}{10}^{\mathrm{-}5}\mathrm{/}°C\)

Desiccation shrinkage coefficient:

\(k\mathrm{=}{10}^{\mathrm{-}5}\)

For the non-linear mechanical characteristics of the model **** BETON_DOUBLE_DP :**

Uniaxial compression strength:

\(f\text{'}c\mathrm{=}40N\mathrm{/}{\mathit{mm}}^{2}\)

of

\(0°C\) to \(400°C\)

\(f\text{'}c\mathrm{=}15N\mathrm{/}{\mathit{mm}}^{2}\)

unto

\(800°C\) (linear decay)

Uniaxial tensile strength:

\(f\text{'}t\mathrm{=}4N\mathrm{/}{\mathit{mm}}^{2}\)

of

\(0°C\) to \(400°C\)

\(f\text{'}t\mathrm{=}1.5N\mathrm{/}{\mathit{mm}}^{2}\)

unto

\(800°C\) (linear decay)

Compressive strength ratio

biaxial/uniaxial compression:

\(b\mathrm{=}1.16\)

Breakdown energy in compression:

\({G}_{c}\mathrm{=}10\mathit{Nmm}\mathrm{/}{\mathit{mm}}^{2}\)

Tensile break energy:

\({G}_{t}\mathrm{=}0.1\mathit{Nmm}\mathrm{/}{\mathit{mm}}^{2}\)

Ratio of the elastic limit to the strength

in uniaxial compression:

30%

1.3. Boundary conditions and mechanical loads#

Temperature field decreasing from \(20°C\) to \(0°C\).

Underside of the cube (\(\mathit{facexy}\)):

blocked next \(\mathit{oz}\).

Top side of the cube (\(\mathit{face1xy}\)):

Displacement \({U}_{z}\mathrm{=}\mathrm{0,15}\mathit{mm}\)

Left side of the cube (\(\mathit{faceyz}\)):

blocked next \(\mathit{ox}\).

Right side of the cube (\(\mathit{face1yz}\)):

Displacement \({U}_{x}\mathrm{=}\mathrm{0,15}\mathit{mm}\)

Front side of the cube (\(\mathit{facexz}\)):

blocked next \(\mathit{oy}\).

Back side of the cube (\(\mathit{face1xz}\)):

Displacement \({U}_{y}\mathrm{=}\mathrm{0,15}\mathit{mm}\)