B modeling ============== Characteristics of modeling ----------------------------------- MEC3TR7H (degenerate 3D shell) .. image:: images/10000A70000069BB00001B14A58729DAFC3CEB23.svg :width: 283 :height: 72 .. _RefImage_10000A70000069BB00001B14A58729DAFC3CEB23.svg: modeling COQUE_3D - regular but not symmetric mesh. The problem data corresponds to a thin shell .. image:: images/Object_7.svg :width: 283 :height: 72 .. _RefImage_Object_7.svg: which is severe for finite element MECQTR7H (case of transverse shear blockage). Characteristics of the mesh ---------------------------- Number of knots: 33 Number of meshes and type: 20 TRIA7 Tested features ----------------------- * The geometric nonlinear element COQUE_3D, * The static algorithm for updating large rotations GROT_GDEP from STAT_NON_LINE, * The use of a follower pressure. B modeling results ------------------------------ History of horizontal displacement :math:`\mathit{DX}` (:math:`m`) in the middle of :math:`\mathit{P1P2}` .. csv-table:: "**Moment**", "**Press** **p**", "**Reference** **(Samcef)**" .. csv-table:: "11. ", "11. ", "-7.36640 E+00" "22. ", "22. ", "-1.35098 E+01" History of vertical displacement :math:`\mathit{DZ}` (:math:`m`) in the middle of :math:`\mathit{P1P2}` .. csv-table:: "**Moment**", "**Press** :math:`P` ", "**Reference** **(Samcef)**" .. csv-table:: "11. ", "11. ", "-8.44920 E+00" "22. ", "22. ", "-5.78828 E+00" Horizontal rotation story :math:`\mathit{DRY}` in the middle of :math:`\mathit{P1P2}` .. csv-table:: "**Moment**", "**Press** :math:`p` ", "**Reference** **(Samcef)**" .. csv-table:: "11. ", "11. ", "1.69200 E+00" "22. ", "22. ", "2.82168 E+00" notes --------- The mesh in modeling B is a regular but not symmetric mesh. The reference solution mesh is built with 20 quadrangles with 4 nodes each. We use the value of COEF_RIGI_DRZ = 0.001. Although the problem being studied is a thin shell problem .. image:: images/Object_8.svg :width: 283 :height: 72 .. _RefImage_Object_8.svg: , the triangle elements reach a high load level: 22 steps for 26 with the quadrangles. The solution with triangle elements is therefore very satisfactory.