Benchmark solution ===================== The analytical reference solution is determined by the theory of beams. We consider a free-standing embedded beam. The geometric characteristics are those defined in paragraph [:ref:`§2.1 <§2.1>`]. A normal compression force :math:`(–F;\mathrm{0 };0)` and a bending moment :math:`(\mathrm{0 };{e}_{z}\mathrm{.}F;–{e}_{y}\mathrm{.}F)` are applied to the free end. The solution to this problem is as follows: **Stress tensor:** .. image:: images/Object_5.svg :width: 126 :height: 80 .. _RefImage_Object_5.svg: with .. image:: images/Object_6.svg :width: 126 :height: 80 .. _RefImage_Object_6.svg: .. _RefEquation 2-1: Eq 2-1 **Movations**: neglecting the Poisson effects we get .. image:: images/Object_7.svg :width: 126 :height: 80 .. _RefImage_Object_7.svg: .. _RefEquation 2-2: Eq 2-2 with boundary conditions .. image:: images/Object_8.svg :width: 126 :height: 80 .. _RefImage_Object_8.svg: In the expressions above, :math:`F` refers to the residual normal force in the cable after elastic shortening of the beam, which can be explained as a function of the initial tension :math:`{F}_{0}`. The axial deformation rate of concrete at the cable level is written :math:`{\varepsilon }_{\mathrm{xx}}^{\mathrm{béton}}=\frac{{\sigma }_{\mathrm{xx}}}{{E}_{b}}=-\frac{F}{{E}_{b}{a}^{2}}\left[1+\frac{12{e}_{y}^{2}}{{a}^{2}}+\frac{12{e}_{z}^{2}}{{a}^{2}}\right]` The residual normal force in the cable is deduced from the initial tension :math:`{F}_{0}` by the relationship .. image:: images/Object_10.svg :width: 126 :height: 80 .. _RefImage_Object_10.svg: and :math:`{\varepsilon }_{\mathrm{xx}}^{\mathrm{acier}}=\frac{F-{F}_{0}}{{E}_{a}{S}_{a}}`; from where: .. image:: images/Object_12.svg :width: 126 :height: 80 .. _RefImage_Object_12.svg: either .. image:: images/Object_13.svg :width: 126 :height: 80 .. _RefImage_Object_13.svg: .. _RefEquation 2-3: eq 2-3 The numerical reference values are calculated using the formulas [:ref:`éq 2-1 <éq 2-1>`], [:ref:`éq 2-2 <éq 2-2>`], and [:ref:`éq 2-3 <éq 2-3>`].