Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is obtained by an analytical calculation. The imposed displacement :math:`{u}_{y}^{D}` immediately provides the deformation :math:`{\mathrm{\epsilon }}_{\mathit{yy}}=\frac{{u}_{y}^{D}}{1}`. Only this component (corresponding to the non-zero component of the stress tensor) is of interest to us here. On the other hand, to calculate the behavior, it is necessary to extract the isotropic work hardening function :math:`R(p)` from the data: .. image:: images/Object_7.svg :width: 279 :height: 249 .. _RefImage_Object_7.svg: .. math:: :label: eq-1 {\ mathrm {\ sigma}} ^ {t} =F (\ mathrm {\ epsilon}) = {\ mathrm {\ sigma}} _ {y} +\ frac {E\ mathrm {.} {E} _ {T}} {E- {E} _ {T}} p R (p) = {\ mathrm {\ sigma}}} _ {y} +\ left (\ frac {E\ mathrm {.} {E} _ {T}} {E- {E} _ {T}} -\ frac {3} {2} C\ right) p Elastic behavior ~~~~~~~~~~~~~~~~~~~~~~~~~~ The behavior is elastic up to :math:`t=1`. For :math:`t=1`, the :math:`{\mathrm{\sigma }}_{\mathit{yy}}=E{\mathrm{\epsilon }}_{\mathit{yy}}=400\mathit{MPa}` constraint, it just reaches the plasticity threshold. Elastoplastic filler ~~~~~~~~~~~~~~~~~~~~~~~~ At :math:`t=2`, we reach the plasticity criterion (in charge or in discharge), we have: .. math:: :label: eq-2 |\ mathrm {\ sigma} -\ frac {3} {2} C {\ mathrm {\ epsilon}} ^ {p} |=R (p) \ textrm {and} \ mathrm {\ sigma} =E (\ mathrm {\ epsilon} - {\ mathrm {\ epsilon}}} ^ {p}) For the load, it is therefore necessary to solve the following equation: .. math:: :label: eq-3 {\ mathrm {\ sigma}} ^ {t} =F (\ mathrm {\ epsilon}) = {\ mathrm {\ sigma}} _ {y} +\ frac {E\ mathrm {.} {E} _ {T}} {E- {E} _ {T}} p= {\ mathrm {\ sigma}} _ {y} +\ frac {E\ mathrm {.} {E} _ {T}} {E- {E} _ {T}}}\ left (\ mathrm {\ epsilon} -\ frac {{\ mathrm {\ sigma}}} ^ {t}} {T}} {E}\ right) Which brings back :math:`{\mathrm{\sigma }}^{t}={\mathrm{\sigma }}_{y}+{E}_{T}\left(\mathrm{\epsilon }-\frac{{\mathrm{\sigma }}_{y}}{E}\right)`. We move on the traction curve to point :math:`A` such that: .. math:: : label: eq-4 {\ mathrm {\ sigma}} _ {A} ^ {t} =E\ left ({\ mathrm {\ epsilon}} _ {A} - {\ mathrm {\ epsilon}}} _ {A} ^ {p}\ right) Elastic discharge ~~~~~~~~~~~~~~~~~~~~ At :math:`t=3`, the discharge is elastic up to point :math:`A’`: .. math:: : label: eq-5 - {\ mathrm {\ sigma}} ^ {A\ text {'}}} -\ frac {3} {2} C {\ mathrm {\ epsilon}}} _ {A} ^ {p} =R ({p} _ {A}) {\ mathrm {\ sigma}} ^ {A\ text {'}} =E\ left ({\ mathrm {\ epsilon}}} _ {A\ text {'}}} - {\ mathrm {\ epsilon}}} - {\ mathrm {\ epsilon}}} _ {A} ^ {p}\ right) Elastoplastic load under compression ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ At :math:`t=4`: .. math:: :label: eq-6 {\ mathrm {\ sigma}} ^ {c} =\ frac {3} {2} C {\ mathrm {\ epsilon}} ^ {p} -R (p) Benchmark results ---------------------- +---------+------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------+ |:math:`t`| | | + + .. image:: images/Object_16.svg + .. image:: images/Object_17.svg + | | :width: 279 | :width: 26 | + + :height: 249 + :height: 26 + | | | | + + + :math:`(\mathrm{MPa})` + | | | | +---------+------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------+ |1 | #. 10—3 |400 | + + + + | | | | +---------+------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------+ |2 |4.5d—3 |500 | +---------+------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------+ |3 |0.1d—3 |—380 | +---------+------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------+ |4 |—2. 10—3 |—464 | +---------+------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------+ Uncertainty about the solution --------------------------- Analytical solution. Bibliographical references --------------------------- * Behavioral relationship to linear and isotropic nonlinear kinematic work hardening. Note [:external:ref:`R5.03.16 `].