Reference problem ===================== Geometry --------- It is a semi-elliptical circumferential crack opening out into a narrow internal hole plunged into a straight pipe. We only model a quarter of a pipe: .. image:: images/100002010000032800000224C719561A7006B63A.png :width: 6.889in :height: 4.672in .. _RefImage_100002010000032800000224C719561A7006B63A.png: Figure 1.1-2: Defect geometry The tube has a length of 1500 mm, a thickness of 60 mm, and an internal radius of 270 mm. The defect is 15 mm deep and 45 mm long. Material properties -------------------- 316L austenitic steel at 350°C- is used for all models. :math:`E=177000\mathit{MPa}` :math:`\nu \mathrm{=}0.3` :math:`{\sigma }_{\gamma }=120\mathit{MPa}` The laws of material behavior vary for each model. Linear elastic (*' ELAS '*, modeling :math:`A`) Nonlinear elastic (*' ELAS_VMIS_TRAC ',* modeling :math:`B`) Elasto-plastic (*' VMIS_ISOT_TRAC ',* modeling :math:`C`) Below is the traction curve used. .. image:: images/10000201000008F20000053D8A21AC68115FA9F6.png :width: 6.889in :height: 4.0335in .. _RefImage_10000201000008F20000053D8A21AC68115FA9F6.png: Figure 1.2-1:316L austenitic steel tensile curve at 350°C provided by [:ref:`bib1 `]. Boundary conditions and loads ------------------------------------- Symmetry with respect to the 2 main planes: :math:`{U}_{Y}=0.` in the :math:`Y=0` plan. :math:`{U}_{Z}=0.` in the :math:`Z=0.` plane out of the crack Rigid mode on the :math:`X` axis. Average :math:`{U}_{X}` in nodes NODE_CENTRE_FISS_T and NODE_CENTRE_FISS_TM is zero. The loading conditions are: A following bending moment (:math:`-Y`) stresses the semi-elliptical defect in the opening in the most penalizing manner. :math:`M=-5216\mathit{kNm}` where :math:`M` is the moment on the :math:`Y` axis. It is applied to the end of the tube via a linear distribution following :math:`x` of axial stresses :math:`{\sigma }_{\mathit{zz}}` :math:`{\sigma }_{\mathit{zz}}=\frac{Mx}{I}` in the :math:`Z=1500\mathit{mm}` plan where :math:`I` is the squared moment of bending. :math:`I=\pi \frac{({R}_{\text{ext}}^{4}-{R}_{\text{int}}^{4})}{4}`