5. H modeling#

5.1. Characteristics of modeling#

The symmetry of the problem makes it possible to model only half of it (\(X\ge 0\)).

60 finite elements SEG2 are arranged regularly on the initial contact surface (3 degrees of angle for each).

The cylinder and the circular volume surrounding the bore are meshed with elements QUA4 and TRIA3.

++————————————————————————————+—————————————————————————————————————–+ || |CONTACT | ++ .. image:: images/Object_11.svg + + || :width: 164 | METHODE = “CONTINUE” COULOMB = 0.4 | ++ :height: 232 + APPARIEMENT =” MAIT_ESCL “Master: bcc1 Slave: bcc2 + || | | ++ + + || | | ++————————————————————————————+—————————————————————————————————————–+

Boundary condition:

  • on the GROUP_MA

\(\mathrm{CC4}\):

\(\mathrm{DX}=0\), \(\mathrm{DY}=0\).

  • on GROUP_MA

\(\mathrm{AD1}\), \(\mathrm{AD2}\), \(\mathrm{AD3}\),, \(\mathrm{AD4}\), \(\mathrm{BD3}\), and \(\mathrm{BD4}\):

\(\mathrm{DX}=0\).

Loads:

The symmetry of the problem with respect to plane \(x=\mathrm{0 }\) makes it possible to model the force concentrated by a nodal force \(\mathrm{Fy}=–937.5{10}^{3}N\), equivalent to \(Q/2\) for a cylinder of unit length, applied to the group of nodes \({O}_{2}\), the center of the cylinder.

This force is applied in 1 increment.

5.2. Characteristics of the mesh#

Number of nodes:

1282

Number of meshes and types:

128 SEG2 162 TRIA3 1106 QUAD4

5.3. Tested values: SIGM_ELNO#

The normal pressure forces generated by the contact and friction are tested. These efforts, defined in polar coordinates, are expressed in \(\mathit{Pa}\).

Identification

Reference

Aster

% difference

SIXXpour an angle of

—1.7813E+07

— 1.79054E+07

0.519

SIXX

—1.7813E+07

—1.88551E+07

5.850

SIXX

—1.7750E+07

— 1.89952E+07

7.015

SIXX

—1.7688E+07

— 1.88212E+07

6.407

SIXX

12°

—1.7594E+07

—1.85900E+07

5.661

SIXX

15°

—1.7470E+07

—1.83361E+07

4.958

SIXX

18°

—1.7312E+07

— 1.78879E+07

3.327

SIXX

21°

— 1.7125E+07

— 1.74676E+07

2.001

SIXX

24°

— 1.6906E+07

— 1.67457E+07

—0.948

SIXX

27°

— 1.6656E+07

—1.60969E+07

—3.357

SIXX

30°

— 1.6343E+07

— 1.56549E+07

—4.211

SIXX

33°

—1.5937E+07

— 1.57323E+07

—1.284

SIXX

36°

— 1.5406E+07

—1.55859E+07

1.168

SIXX

39°

—1.4781E+07

— 1.51202E+07

2.295

SIXX

42°

—1.4031E+07

— 1.42668E+07

1.680

SIXX

45°

—1.3094E+07

— 1.33861E+07

2.230

SIXX

48°

—1.1169E+07

—1.24518E+07

11.485

SIXX

51°

—1.0593E+07

—1.11524E+07

5.280