1. Reference problem#

1.1. Geometry#

_images/Object_1.svg

1.2. Material properties#

Elasticity limit:

_images/Object_2.svg

.

1.3. Boundary conditions and loads#

2D boundary conditions:

  • on \(\mathit{AB}\): \(\mathit{DX}\mathrm{=}0.\)

  • on \(\mathit{BC}\): \(\mathit{DY}\mathrm{=}0.\)

Boundary conditions in 3D:

  • \(\mathit{EFGH}\) (\(\mathit{FACEXINF}\)): \(\mathit{DX}\mathrm{=}0.\)

  • \(\mathit{ADEH}\) (\(\mathit{FACEYINF}\)): \(\mathit{DY}\mathrm{=}0.\)

  • \(\mathit{DCFE}\) (\(\mathit{FACEZINF}\)): \(\mathit{DZ}\mathrm{=}0.\)

Boundary conditions in AXIS:

  • on \(\mathit{BC}\) and \(\mathit{AD}\): \(\mathit{DY}\mathrm{=}0.\)

The load set by

_images/Object_3.svg

is:

  • in 2D:

\(\mathit{FY}\mathrm{=}–1.\) out of \(\mathit{AD}\)

  • in 3D:

\(\mathit{FX}\mathrm{=}–0.2\) out of \(\mathit{ABCD}\) (\(\mathit{FXSUP}\))

\(\mathit{FY}\mathrm{=}–0.8\) out of \(\mathit{BCFG}\) (\(\mathit{FYSUP}\))

  • in AXIS:

\(\mathit{FX}\mathrm{=}1.\) out of \(\mathit{AB}\).