D modeling ============== Characteristics of modeling ----------------------------------- .. image:: images/Object_10.svg :width: 486 :height: 157 .. _RefImage_Object_10.svg: We are looking for a movement independent of z; a single "row" of quadrangular elements is therefore sufficient. **Cut**: 8 quadrangles MEC3QU9H. Modeling COQUE_3D. The thickness of the elements is divided into 3 layers for the nonlinear calculation [:ref:`R3.07.04 `]. Each layer has 3 integration points in upper layer skin, in the middle of each layer and in lower layer skin. The model studied here therefore includes 7 integration points in the thickness of the plate. **Boundary conditions:** .. code-block:: text AB (GROUP_NO: AB): DX = DY = DZ = DRX = DRY = DRZ = 0 TOUT: 'OUI': DZ = DRX = DRY = 0 **Loading**: two types of loading are applied: .. csv-table:: "* nodal forces in :math:`C` and :math:`D` and :math:`E` (middle node on CD side) FX (C) =", ":math:`\mathrm{FX}(D)=\mathrm{pxLh}/6=\mathrm{0.08333N.}`" "", ":math:`\mathrm{FX}(E)=\mathrm{2pxLh}/3=\mathrm{0.33N.}`" * force distributed on the CD :math:`\mathrm{FX}=\mathrm{5N}/\mathrm{mm}` side. Characteristics of the mesh ---------------------------- .. csv-table:: "Number of nodes:", "43 external + 8 internal" "Number of meshes and types:", "8 QUA9 + 1 SEG3" Tested values --------------- At order number 10 or :math:`t=1`. The results are the same with FORCE_NODALE or FORCE_ARETE. .. csv-table:: "**Identification**", "**Reference**" ":math:`\mathrm{DX}(X)` ", "0.02743" ":math:`\mathrm{DY}(X)` ", "—0.2804"