Reference problem ===================== Geometry --------- .. image:: images/10000000000006F0000007C046D9570517C095E7.png :width: 5.9165in :height: 6.611in .. _RefImage_10000000000006F0000007C046D9570517C095E7.png: All ratings are in :math:`\mathrm{mm}`. The crack is located :math:`\mathrm{0,2}\mathrm{mm}` from the interface, in the upper part of the specimen. Material properties ------------------------ **Material #1:** austenitic steel Von Mises elastoplastic with isotropic work hardening Young's modulus :math:`{E}_{1}\mathrm{=}{2.10}^{5}\mathit{MPa}`, Poisson's ratio :math:`{\nu }_{1}=\mathrm{0,3}` Elastic limit :math:`{\sigma }_{\mathit{y1}}\mathrm{=}310\mathit{MPa}` Uniaxial tensile curve: .. csv-table:: ":math:`\sigma (\mathrm{MPa})` ", "0", "310", "310", "600", "700" ":math:`\varepsilon` ", "0", "0.155", "0.155", "40", "100" **Material #2:** ferritic steel Von Mises elastoplastic with isotropic work hardening Young's modulus :math:`{E}_{2}={2.10}^{5}\mathrm{MPa}`, Poisson's ratio :math:`{\nu }_{2}=\mathrm{0,3}` Elastic limit :math:`{\sigma }_{\mathrm{y2}}=442\mathrm{MPa}` .. csv-table:: ":math:`\sigma (\mathrm{MPa})` ", "0", "442", "442", "600", "650" ":math:`\varepsilon` ", "0", "0.221", "40", "100" **Material #3:** almost non-deformable pins Isotropic linear elastic Young's modulus :math:`{E}_{3}={6.10}^{10}\mathrm{MPa}`, Poisson's ratio :math:`{\nu }_{3}=\mathrm{0,3}` Boundary conditions and loading ------------------------------------ Given the asymmetry of the materials, the entire specimen is modelled. **Blocks:** .. csv-table:: ":math:`\mathrm{UX}=\mathrm{UY}=0` ", "at point :math:`B` (center of the lower pin)" ":math:`\mathrm{UX}=0` ", "at point :math:`A` (center of the top pin)" **Loading per imposed displacement:** .. math:: : label: EQ-None 0\ le\ mathrm {UY}\ le 1\ mathrm {mm} The load is therefore monotonous and increasing.