Modeling A ============== Validation of joint :math:`\mathrm{2D}` with the JOINT_MECA_RUPT law Characteristics of modeling ----------------------------------- Modeling in plane deformations D_ PLAN for the elastic element. Plane modeling for the joint element (keyword PLAN_JOINT). Characteristics of the mesh ---------------------------- Number of knots: 6 The elastic element is a QUAD4. The joint element is a degenerate QUAD4 (knots combined). Tested sizes and results ------------------------------- **Fashion** :math:`I` The joint is opened until partial damage [1] _ . :math:`U\mathrm{=}\beta \mathrm{\times }{U}_{\mathit{el}}+(1\mathrm{-}\beta )\mathrm{\times }{U}_{\mathit{max}}` Where :math:`\beta \mathrm{=}0.2`. Then it goes into compression zone :math:`U\mathrm{=}\mathrm{-}{U}_{\mathit{el}}`. Finally, the joint is put into tension until complete damage :math:`U\mathrm{=}{U}_{\mathit{max}}`. We test the global response (the resultant of the nodal force, FN) of the system (joint and cube) in the local coordinate system. The reference values are analytical (see page :ref:`6 `). **Fashion** :math:`\mathrm{II}` The joint is opened in :math:`I` mode until partial damage occurs, then it is stressed in :math:`\mathit{II}` mode. Tangential stiffness slopes are tested at two values of normal apertures. The incremental nature of the tangential evolution causes the tangential stress to change during the partial discharge in :math:`I` mode, which makes its analytical estimation complex. So we test it after the discharge by regression. We note by: :math:`{\sigma }_{\mathit{pena}}\mathrm{=}{\sigma }_{\mathit{max}}{P}_{\mathit{cont}}\mathrm{\times }(E+{L}_{\mathit{cube}}\mathrm{\times }{K}_{N})\mathrm{/}(E+{L}_{\mathit{cube}}\mathrm{\times }{K}_{N}\mathrm{\times }{P}_{\mathit{cont}})` :math:`{\sigma }_{t}({\delta }_{n})\mathrm{=}{K}_{T}\mathrm{\times }(1\mathrm{-}{\delta }_{n}\mathrm{/}{L}_{\mathit{CT}}){U}_{t}` +-------------------------------------------+----------------------------------------------------------------------------+---------------------------------------+ |**Size tested** |**Reference** |**Tolerance (** :math:`\text{\%}` **)**| +-------------------------------------------+----------------------------------------------------------------------------+---------------------------------------+ |**fashion** :math:`I` | +-------------------------------------------+----------------------------------------------------------------------------+---------------------------------------+ |FN, peak value |:math:`{\sigma }_{\mathit{max}}`, which is :math:`\mathrm{1.D05}` |0.10 | +-------------------------------------------+----------------------------------------------------------------------------+---------------------------------------+ |FN, value damaged |:math:`\beta {\sigma }_{\mathit{max}}`, which is :math:`\mathrm{2.D04}` |0.10 | +-------------------------------------------+----------------------------------------------------------------------------+---------------------------------------+ |FN, compression value |:math:`{\sigma }_{\mathrm{pena}}`, which is :math:`\mathrm{-}\mathrm{2.D05}`|0.10 | +-------------------------------------------+----------------------------------------------------------------------------+---------------------------------------+ |**fashion** :math:`\mathit{II}` | +-------------------------------------------+----------------------------------------------------------------------------+---------------------------------------+ |FT, for two values of :math:`{\delta }_{n}`|:math:`{\sigma }_{t}({\delta }_{n})` |0.10 | +-------------------------------------------+----------------------------------------------------------------------------+---------------------------------------+ .. [1] see the analytical solution for ratings