B modeling ============== Characteristics of modeling ----------------------------------- .. math:: :label: eq-1 \ textrm {Modeling} \ mathrm {2D} .. image:: images/100007CC000069BB000067DFBB97E607D5BD7D2E.svg :width: 220 :height: 216 .. _RefImage_100007CC000069BB000067DFBB97E607D5BD7D2E.svg: Figure 4.1-1: Modeling B mesh **Boundary conditions:** .. math:: : label: EQ-None \ mathit {N1} \ mathit {N2} Table 4.1-1: Boundary conditions for B modeling **Charging:** Traction on the face :math:`\mathrm{[}\mathrm{3,}4\mathrm{]}` (mesh SEG2) The total number of increments is 20 (20 increments between :math:`t\mathrm{=}\mathrm{0s}` and :math:`\mathrm{2s}`) Convergence is achieved if residue RESI_GLOB_RELA is less than or equal to 10—6. Characteristics of the mesh ---------------------------- Number of knots: 4 Number of meshes: 2 1 QUAD4 1 SEG2 Tested sizes and results ------------------------------ +---------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+------------+-------+-------------+ |**Identification** |**Reference** |**Tolerance**| + +--------------+------------+-------+ + | |**SIMO_MIEHE**|**GDEF_LOG**|**HPP**| | +---------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+------------+-------+-------------+ |:math:`t\mathrm{=}2` Displacement :math:`\mathit{DX}` (:math:`\mathit{N8}`) |290 |290 |290 |1.00% | +---------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+------------+-------+-------------+ |:math:`t\mathrm{=}2` Constraints :math:`\mathit{SIGXX}` (:math:`\mathit{PG1}`) |1495 |1495 |1570 |1.00% | +---------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+------------+-------+-------------+ |:math:`t\mathrm{=}2` Variable |0.2475 |0.2475 |0.282 |1.50% | + .. image:: images/Object_65.svg + + + + + | :width: 220 | | | | | + :height: 216 + + + + + | | | | | | + :math:`\mathit{VARI}` (:math:`\mathit{PG1}`) + + + + + | | | | | | +---------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+------------+-------+-------------+ |:math:`t\mathrm{=}2` ENER_ELAS, TOTALE |2.82E+009 |2.81 E9 |3.08 E9|5.00% | +---------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+------------+-------+-------------+ Table 4.3-1: Model B results GDEF_LOG with ETAT_INIT ----------------------- To impose an initial stress field in large deformations with the GDEF_LOG formalism, the user must give as input the stress tensor defined in the :math:`T` logarithmic space (and not that of Cauchy :math:`\sigma`). Since the components of the latter are stored as internal variables, it is necessary to use the operands VARI and DEPL of the keyword factor ETAT_INIT of the command STAT_NON_LINE as indicated below (these fields can for example be obtained by the command CREA_CHAMP). We get the internal variables field (to obtain :math:`T`) and also the corresponding displacement field: VAR_LOG1 = CREA_CHAMP (INFO =2, TYPE_CHAM =' ELGA_VARI_R ', OPERATION =' EXTR ', RESULTAT = LOG1, NOM_CHAM =' VARI_ELGA ', INST =1.0,); DEP_LOG1 = CREA_CHAMP (INFO =2, TYPE_CHAM =' NOEU_DEPL_R ', OPERATION =' EXTR ', RESULTAT = LOG1, NOM_CHAM =' DEPL ', INST =1.0,); then we enter in STAT_NON_LINE, the initial stress state: ETAT_INIT =_F (VARI = VAR_LOG1, DEPL = DEP_LOG1).