3. Modeling A#

3.1. Characteristics of modeling#

_images/10001B9600001C0200001530223DD17A2741771F.svg

Figure 3.1-1: Modeling A mesh

Boundary conditions:

\(\mathit{N2}\): \(\mathit{N1}\): \(\mathit{N6}\):

\({U}_{x}\mathrm{=}{U}_{y}\mathrm{=}{U}_{z}\mathrm{=}0\) \({U}_{x}\mathrm{=}{U}_{z}\mathrm{=}0\) \({U}_{x}\mathrm{=}{U}_{y}\mathrm{=}0\)

\(\mathit{N9}\), \(\mathit{N13}\), \(\mathit{N14}\),, \(\mathit{N5}\),, \(\mathit{N17}\): \({U}_{x}\mathrm{=}0\)

Table 3.1-1: Boundary conditions modeling A

Load: Traction on the face \(\mathrm{[}\mathrm{3,}\mathrm{4,}\mathrm{8,}\mathrm{7,}\mathrm{11,}\mathrm{16,}\mathrm{19,}15\mathrm{]}\)

The total number of increments is 20 (20 increments between \(t\mathrm{=}\mathrm{0s}\) and \(\mathrm{2s}\))

Convergence is achieved if residue RESI_GLOB_RELA is less than or equal to 10—6.

3.2. Characteristics of the mesh#

Number of knots: 20

Number of meshes: 2

1 HEXA20

1 QUAD8

3.3. Tested sizes and results#

Identification

Reference

Tolerance

SIMO_MIEHE

GDEF_LOG

HPP

\(t\mathrm{=}2\) Displacement \(\mathit{DX}\) (\(\mathit{N8}\))

290

290

290

1.00%

\(t\mathrm{=}2\) Constraints \(\mathit{SIGXX}\) (\(\mathit{PG1}\))

1495

1495

1570

1.00%

\(t\mathrm{=}2\) Variable
_images/Object_137.svg

\(\mathit{VARI}\) (\(\mathit{PG1}\))

0.2475

0.2475

0.282

1.50%

\(t\mathrm{=}2\) ENER_ELAS, TOTALE

5.63E+009

5,625E9

6,16E9

5.00%

Table 3.3-1: Results of modeling A