Reference problem ===================== Geometry and loading ----------------------- We consider a Compact Tension specimen (:math:`\mathit{CT}`) with a thickness of :math:`25\mathit{mm}`. The geometry includes a rigid pin to which the load is applied. .. image:: images/10000200000002110000014980051032472A5BCD.png :width: 4.4098in :height: 2.7402in .. _RefImage_10000200000002110000014980051032472A5BCD.png: **Figure 1**: Geometry Material properties ---------------------- To describe the behavior of the axisymmetric specimen material (bulk material), an elastoplastic behavior law with isotropic work hardening is used (law VMIS_ISOT_TRAC). We take: :math:`E\mathrm{=}207\mathit{GPa}` and :math:`\nu \mathrm{=}0.3` and the work hardening curve used is given below: .. image:: images/10000200000001C100000134E1017A238A1EAC7A.png :width: 4.678in :height: 3.2083in .. _RefImage_10000200000001C100000134E1017A238A1EAC7A.png: **Figure 2**: Isotropic work hardening curve of solid material. For interface elements the following parameters are used in law CZM_TRA_MIX: :math:`{\sigma }_{c}\mathrm{=}1800\mathit{MPa}`, :math:`{G}_{c}\mathrm{=}150\mathit{MPa}\mathrm{\cdot }\mathit{mm}`, :math:`{\delta }_{e}\mathrm{=}0.01\mathit{mm}`, :math:`{\delta }_{p}\mathrm{=}0.06\mathit{mm}`, :math:`{\delta }_{c}\mathrm{=}0.117\mathit{mm}` The resulting law is shown schematically below. .. image:: images/100002000000016900000108F387E7EDCA4FFB9E.png :width: 3.7563in :height: 2.7472in .. _RefImage_100002000000016900000108F387E7EDCA4FFB9E.png: **Figure 3**: Law of behavior of interface elements. NB: Only half of the crack is modelled thanks to the symmetry of the problem, the toughness of the material is :math:`2{G}_{c}`. Finally, the rigid pin has elastic behavior (law ELAS) with: :math:`E\mathrm{=}1\mathrm{\times }{10}^{9}\mathit{MPa}`, :math:`\nu \mathrm{=}0.3` Boundary conditions and loading ------------------------------------ The limit conditions imposed on the pin are as follows: * move to :math:`X` blocked, * imposed displacement :math:`l` in the :math:`Y` direction. The evolution of displacement :math:`l` over time is given in the following table: .. csv-table:: "Time :math:`\mathrm{[}s\mathrm{]}` ", "0", "0.4" "Displacement :math:`l` :math:`\mathrm{[}\mathit{mm}\mathrm{]}` ", "0", "1.6" The cohesive zone is represented by the interface elements on the test piece ligament. The boundary conditions on the interface elements are: * displacement in :math:`X` imposed identical on both lips of the cohesive zone, * :math:`Y` movement stuck on the lower lip.