Reference problem ===================== Geometry --------- We represent a square with side :math:`l\mathrm{=}\mathrm{1m}`. .. image:: images/10000200000000BC000000EDED7B21EA295799F1.png :width: 1.961in :height: 2.4709in .. _RefImage_10000200000000BC000000EDED7B21EA295799F1.png: Illustration 1: Geometry of the test case ------------------------------------- Material properties ------------------------ **Material:** Elasticity parameters: Young's modulus :math:`{E}_{1}={20.10}^{9}\mathrm{MPa}`, Poisson's ratio :math:`{\nu }_{1}=\mathrm{0,25}` Parameters of law ENDO_HETEROGENE: Elastic limit :math:`{\sigma }_{y}\mathrm{=}5\mathit{MPa}` Weibull module :math:`m=6` Tenacity :math:`{K}_{c}=1{\mathrm{MPa.m}}^{1/2}` Thickness of sample :math:`\mathit{ep}\mathrm{=}\mathrm{1m}` Seed :math:`\mathrm{GR}=121` Parameter of the non-local model: Characteristic length :math:`{l}_{c}=\mathrm{0,2}m` Boundary conditions and loading ------------------------------------ The lower edge is blocked in movement in the vertical direction, the lateral edges are subject to a field of movement that varies linearly in height. Either: At the bottom: :math:`{u}_{y}(x,y=0)=0` To the right :math:`{u}_{y}(x=l,y)={\mathrm{c.u}}_{d}(1-y/l)` with :math:`{u}_{d}=\mathrm{0,0001}` To the right :math:`{u}_{y}(x=\mathrm{0,}y)=-{u}_{y}(x=l,y)` :math:`c` corresponds to a loading ramp varying between 0 and 1 over the simulation time (1 s). .. image:: images/1000020000000147000000C397BCB8B820E6BC3D.png :width: 2.7339in :height: 1.8366in .. _RefImage_1000020000000147000000C397BCB8B820E6BC3D.png: Figure 2: Boundary condition diagrams Benchmark solution --------------------- There is no reference solution here and the test is of a non-regression type. It uses the coupling law ENDO_HETEROGENE, which is itself based on regularized constraints. The result is therefore purely qualitative. The aim here is to observe the onset of a crack following lateral loading.