Reference problem ===================== Geometry --------- Structure :math:`\mathrm{2D}` is a rectangular plate (:math:`\mathrm{LX}=\mathrm{0,2}m`, :math:`\mathrm{LY}=\mathrm{0,5}m`), with a right central crack, inclined at a variable angle :math:`\theta` with respect to the horizontal axis [:ref:`Figure 1.1-1 `]. The crack length is constant (:math:`a=\mathrm{0,04}m`). In this test, the angle :math:`\theta` will successively take the values: :math:`0°`, :math:`15°`,, :math:`30°`,, :math:`45°`, :math:`60°` for modeling :math:`A` and :math:`0°`, :math:`45°` for modeling :math:`B`. We call the "bottom line" the line in :math:`y=-\mathrm{LY}/2` and "top line" the line in :math:`y=\mathrm{LY}/2`. The nodes marked :math:`A`, :math:`B`, :math:`C`, and :math:`D` on the :ref:`Figure 1.1-1 ` serve to impose boundary conditions, which are explained in paragraph [§ :ref:`1.3 `]. .. image:: images/10000000000002B7000003C6BFA1BC58A85151FA.png :width: 4.1134in :height: 5.0752in .. _RefImage_10000000000002B7000003C6BFA1BC58A85151FA.png: .. _Ref94087906: **Figure** 1.1-1 **: geometry of the cracked plate and loading of the modelling** :math:`A` **.** Material properties ---------------------- Young's module: :math:`E=210{10}^{9}\mathrm{Pa}` Poisson's ratio: modeling A :math:`\nu =0.3`, modeling B :math:`\nu =0` Density: B modeling: :math:`\rho =7800\mathrm{kg}/{m}^{3}` .. _Ref193800026: Boundary conditions and loads ------------------------------------- *Modeling* :math:`A` *:* Loading consists of applying a force distributed over the lower and upper lines :math:`p={10}^{6}\mathrm{Pa}`. In order to block rigid modes, we block the movements of the nodes :math:`A`, :math:`B`, :math:`C` and :math:`D` as follows: * :math:`{\mathrm{DY}}^{A}={\mathrm{DY}}^{B}=0`; * :math:`{\mathrm{DX}}^{C}={\mathrm{DX}}^{D}=0`. *Modeling* :math:`B` *:* Charging consists in applying to the plate an embedment on the upper line and a volume force of type FORCE_INTERNE or PESANTEUR. We make sure to apply the same load (following :math:`-Y`) for two successive calculations with these key words: for the first imposed force density of :math:`78000N/{m}^{3}` and for the second one chooses an acceleration due to gravity equal to :math:`10{\mathrm{m.s}}^{-2}` and therefore a force density of :math:`10.\rho =78000N/{m}^{3}`. *Models* :math:`C` *,* :math:`D` *,* *,* :math:`E` *:* Same assumptions as modeling :math:`A` *Modeling* :math:`F` *:* The tensile load on the upper and lower faces is replaced by pressure on the lips of the crack (the 2 loads are equivalent) Benchmark solution --------------------- *Modeling* :math:`A` *:* The analytic expressions for the stress intensity factors :math:`{K}_{I}` and :math:`{K}_{\mathrm{II}}` are functions of the distributed force :math:`p`, the crack length :math:`a`, the plate width :math:`\mathrm{LX}`, and the angle :math:`\theta`: :math:`\begin{array}{}{K}_{I}=p\sqrt{\pi \frac{a}{2}}F(\frac{a}{\mathrm{Lx}})\mathrm{cos²}\theta \\ {K}_{\mathrm{II}}=p\sqrt{\pi \frac{a}{2}}F(\frac{a}{\mathrm{Lx}})\mathrm{cos}\theta \mathrm{sin}\theta \end{array}` where function :math:`F` can be determined in several different ways. We choose the one obtained by Brown in 1966 [:ref:`bib2, p41 `], whose precision is less than :math:`\text{0,5\%}` if the ratio between the length of the crack and the width of the plate is less than or equal to :math:`\mathrm{0,7}` (in our case, :math:`a/\mathrm{LX}=\mathrm{0,2}`): .. image:: images/Object_3.svg :width: 246 :height: 26 .. _RefImage_Object_3.svg: With the numerical values of the test: +------------------+---------------------------------------------------------+-------------------------------------------------------------------+ |Reference | +------------------+---------------------------------------------------------+-------------------------------------------------------------------+ |:math:`\alpha` (°)|:math:`{K}_{I}({\mathit{Pa.m}}^{\mathrm{-}1\mathrm{/}2})`|:math:`{K}_{\mathit{II}}({\mathit{Pa.m}}^{\mathrm{-}1\mathrm{/}2})`| +------------------+---------------------------------------------------------+-------------------------------------------------------------------+ |0 |2.5725024656 105 |0 | +------------------+---------------------------------------------------------+-------------------------------------------------------------------+ |15 |2,4001774761 105 |6,4312561642 104 | +------------------+---------------------------------------------------------+-------------------------------------------------------------------+ |30 |1.9293768492 105 |1,1139262432 105 | +------------------+---------------------------------------------------------+-------------------------------------------------------------------+ |45 |1,2862512328 105 |1,2862512328 105 | +------------------+---------------------------------------------------------+-------------------------------------------------------------------+ |60 |6,4312561641 104 |1,1139262432 105 | +------------------+---------------------------------------------------------+-------------------------------------------------------------------+ **Table** 1.4-1 **: reference values for** :math:`{K}_{I}` **and** :math:`{K}_{\mathrm{II}}` Theoretically, these values are the same for both crack bottoms. *Modeling* :math:`B` *:* Non-regression tests are carried out. *Models* :math:`C` *,* :math:`D` *,* *,* :math:`E` *,* :math:`F` *:* We use the reference values from modeling :math:`A` Bibliographical references --------------------------- .. _Ref112833260: .. _Ref112833703: 1. GENIAUT S., MASSIN P.: eXtended Finite Element Method, *Code_Aster* Reference Manual, [:ref:`R7.02.12 `] 2. TADA H., PARIS P., IRWIN G.:The stress analysis of cracks handbook, 3rd ed., 2000