Reference problem ===================== Geometry --------- .. image:: images/10000000000000E50000010ECCE334BD207B5CD4.jpg :width: 1.9098in :height: 2.252in .. _RefImage_10000000000000E50000010ECCE334BD207B5CD4.jpg: .. csv-table:: "Point coordinates", ":math:`X` "," :math:`Y`" ":math:`A` ", "0", "0" ":math:`B` ", "0.5", "0" ":math:`C` ", "0.5", "1.0" ":math:`D` ", "0", "1,0" The geometry is rectangular in shape. Material properties ---------------------- For modeling A, the mass consists of an elasto-plastic material with linear negative work-hardening. For modeling B, the mass consists of an elasto-plastic material with parabolic negative work hardening. The elastic parameters of the material are as follows: * Young's module: :math:`E=5800\mathrm{MPa}` * Poisson's ratio: :math:`\nu =\mathrm{0,3}` * Real constant density: :math:`\rho \mathrm{=}2764` * Isotropic thermal expansion coefficient: :math:`\alpha =0` The characteristics of work hardening are then given by: * Pressure dependence coefficient: :math:`\alpha =\mathrm{0,33}` * Ultimate cumulative plastic deformation: :math:`{P}_{\mathrm{ULT}}=\mathrm{0,01}` * Elastic limit: :math:`{\sigma }_{y}\mathrm{=}2.11{10}^{6}` * Elastic limit for the mesh concerned: :math:`{\sigma }_{y}\mathrm{=}2.\mathrm{\times }{10}^{6}` For modeling A: * Work hardening module for the entire mesh: :math:`H\mathrm{=}\mathrm{-}200.\mathrm{\times }{10}^{6}` For modeling B: * Ultimate constraint: :math:`{\sigma }_{\mathit{yULT}}\mathrm{=}0.47\mathrm{\times }{10}^{6}` * Ultimate constraint for the mesh concerned: :math:`{\sigma }_{\mathit{yULT}}\mathrm{=}0.44\mathrm{\times }{10}^{6}` Boundary conditions and loads ------------------------------------- A drained biaxial test (D_ PLAN) is modelled. The trips normal to the study plan are therefore zero. A vertical displacement is imposed on :math:`\mathrm{[}\mathit{DC}\mathrm{]}` while maintaining the constant lateral pressure (:math:`2\mathit{MPa}`) in the study design. The boundary conditions are therefore as follows: :math:`{u}_{y}\mathrm{=}0` out of :math:`\mathrm{[}\mathit{AB}\mathrm{]}` (mesh group :math:`\mathit{BAS}`) :math:`{u}_{x}\mathrm{=}0` out of :math:`\mathrm{[}\mathit{AD}\mathrm{]}` (mesh group :math:`\mathit{GAUCHE}`) :math:`{\sigma }_{n}\mathrm{=}2.\mathrm{\times }{10}^{6}` out of :math:`\mathrm{[}\mathit{BC}\mathrm{]}` (mesh group :math:`\mathit{EXTREM}`) A vertical displacement is then imposed on :math:`\mathrm{[}\mathit{DC}\mathrm{]}` (mesh group :math:`\mathit{HAUT}`) to apply vertical deformation up to :math:`\text{3\%}`. Results --------- The solutions are post-treated in order to control the evolution of the quantities of INDL_ELGA and PDIL_ELGA in non-regression.