Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- Cumulative plastic deformation :math:`P` is equal to: :math:`P\mathrm{=}\frac{{\sigma }_{L}\mathrm{-}{\sigma }^{y}}{C}` with: :math:`{\sigma }_{L}`: constraint to the node in question :math:`{\sigma }^{y}`: elastic limit :math:`C`: slope of the traction curve The constraints are given by: :math:`{\sigma }_{\mathit{xx}}({N}_{i})\mathrm{=}\mathrm{-}{P}_{\mathit{res}}({N}_{i})` The plastic deformation is given by: :math:`\mathrm{\mid }{\varepsilon }_{\mathit{xx}}^{p}({N}_{i})\mathrm{=}P({N}_{i})\mathrm{\mid }` Benchmark results ---------------------- Uniaxial stress, plastic deformation, and cumulative plastic deformation are calculated at nodes :math:`{N}_{2}` and :math:`{N}_{3}`. For the problem in question: .. csv-table:: "", ":math:`{N}_{2}` "," :math:`{N}_{3}`" ":math:`{\sigma }_{\mathit{xx}}` ", "0", "—300" ":math:`{\varepsilon }_{\mathit{xx}}` ", "0", "—6.1658 10—2" ":math:`{\varepsilon }_{\mathit{xx}}^{p}` ", "0", "6.1658 10—2" Uncertainty about the solution --------------------------- Analytical solution. Bibliographical references --------------------------- 1. LORENTZ E., PROIX J.M., VAUTIER I., VOLDOIRE F., F., WAECKEL F.: Introduction to thermo-plasticity in the Aster code. Course Reference Manual. EDF - DER, SCE IMA, Dept. Mechanics and Numerical Models, HI-74/96/013/0