Reference problem ===================== Geometry --------- .. image:: images/Shape1.gif .. _RefSchema_Shape1.gif: **C** **D** **B** **A** .. image:: images/Object_1.png :width: 4.1909in :height: 1.7772in .. _RefImage_Object_1.png: .. csv-table:: "Length", ":math:`L=50\mathrm{mm}`" "Width", ":math:`W=16\mathrm{mm}`" "Crack depth", ":math:`a=6\mathrm{mm}`" Material properties ---------------------- The material is elastoplastic of the Von Mises type. For models A to D, there is no work hardening. For the E-modeling, various work-hardening laws are compared (linear or power hardening). The properties of the material are as follows: .. csv-table:: "Young's module", ":math:`E=\mathrm{2,0601}{10}^{5}\mathrm{MPa}`" "Poisson's Ratio", ":math:`\nu =0.3`" "Elastic limit", ":math:`{\sigma }_{y}=\mathrm{808,34}\mathrm{MPa}`" "Work hardening module", ":math:`H=0` (modeling A to D) or :math:`H=\mathrm{6,867}{10}^{4}\mathrm{MPa}` (modeling E)" Boundary conditions and loading ------------------------------------ For models A, B, and E, the model is limited to half of the structure, the plane of the vertical crack being a plane of symmetry. For the C and D models, the entire structure is represented. **Boundary conditions** Vertical displacement :math:`\mathrm{UX}=0` at point :math:`B` Horizontal displacement :math:`\mathrm{UY}=0` in ligament :math:`\mathrm{AB}` (symmetry condition for models A, B and E) **Loading** Horizontal displacement imposed on segment :math:`\mathrm{CD}`: :math:`\mathrm{UY}=\delta`