Reference problem ===================== Geometry --------- .. image:: images/Groupe 5.gif .. _RefSchema_Groupe 5.gif: .. image:: images/10000200000002FF0000041AB4B6F1BB61585083.png :width: 3.8161in :height: 5.2244in .. _RefImage_10000200000002FF0000041AB4B6F1BB61585083.png: .. csv-table:: "Length", ":math:`L=400\mathit{mm}`" "Width", ":math:`W=100\mathit{mm}`" "Crack depth", ":math:`a=50\mathit{mm}`" Material properties ---------------------- The material obeys a "non-linear" law of elastic behavior (Hencky's law) from von Mises with linear isotropic work hardening (EMAS_VMIS_LINE). The properties of the material are as follows: .. csv-table:: "Young's module", ":math:`E=\mathrm{2,1}\times {10}^{5}\mathit{MPa}`" "Poisson's Ratio", ":math:`\mathrm{\nu }=0.3`" "Linear elastic limit", ":math:`{\mathrm{\sigma }}_{y}=150\mathit{MPa}`" "Traction curve slope", ":math:`\text{D\_SIGM\_EPSI}=\mathrm{5,25}\times {10}^{4}\mathit{MPa}`" "Expansion coefficient", ":math:`\mathrm{\alpha }={1.10}^{-5}`" "Reference temperature", ":math:`\text{VALE\_REF}=20°C` (AFFE_MATERIAU keyword)" Boundary conditions and loading ------------------------------------ For models A and C, the model is limited to half of the structure, the horizontal plane of the crack being a plane of symmetry. For B and D models, the entire structure is represented. **Boundary conditions** A and C models: Horizontal displacement :math:`\mathrm{UX}=0` at point :math:`F` Vertical displacement :math:`\mathrm{UY}=0` in ligament :math:`\mathit{EF}` (symmetry condition) B and D modeling: Horizontal displacement :math:`\mathrm{UX}=0` on segment :math:`\mathit{AB}` Vertical displacement :math:`\mathit{UY}=0` on segment :math:`\mathit{AB}` **Loading** mechanical A and C models: Normal surface force applied to segment :math:`\mathit{CD}` B and D modeling: Horizontal displacement imposed on segment :math:`\mathit{CD}`: :math:`\mathit{UY}=\mathrm{\delta }` Vertical displacement imposed on segment :math:`\mathrm{CD}`: :math:`\mathit{UX}=\mathrm{\delta }` **Thermal load** A to C modeling: No thermal loading. D modeling: Stationary temperature dependent on the :math:`x` axis and increasing linearly between 0°C in :math:`x={x}_{A}=0` and 200°C in :math:`x={x}_{B}=w`. The reference temperature is fixed at 100° C.