3. Modeling A#

3.1. Characteristics of modeling#

A single element based on a QUAD4 mesh, in D_ PLAN.

_images/100003E6000016040000138942F2B161FB87F9EC.svg

Loading and boundary conditions are modelled by:

DDL_IMPO: (NOEUD: N04, DX: 0., DY:0.)

DDL_IMPO: (NOEUD: N03, DX: 0.)

FORCE_NODALE: (NOEUD; (N01 N02), FX: \(-\frac{1}{2}{\sigma }_{d}(t)\), FY: \(-\frac{1}{2}{\tau }_{d}(t)\))

FORCE_NODALE: (NOEUD; (N01 N04), FX: \(-\frac{1}{2}{\tau }_{d}(t)\))

FORCE_NODALE: (NOEUD; (N03 N04), FY: \(\frac{1}{2}{\tau }_{d}(t)\))

FORCE_NODALE: (NOEUD; (N02 N03), FX: \(\frac{1}{2}{\tau }_{d}(t)\))

where \({\sigma }_{d}(t)\) and \({\tau }_{d}(t)\) are the positive functions defined above [§1.3].

3.2. Tested sizes and results#

Behavior LEMAITRE (THETA =0.5)

Variables

Moment (s)

Reference

Tolerance

\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\)

30

1.7620 10—4

0.5%

\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\)

30

1.81585 10—4

0.5%

\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\)

3630

1.9030 10—3

0.5%

\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\)

3630

2.0789 10—3

0.5%

\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\)

3660

1.9130 10—3

0.5%

\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\)

3660

2.1906 10—3

0.5%

\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\)

3720

1.8740 10—3

0.5%

\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\)

3720

3.1813 10—3

0.5%

Behavior VISC_ENDO_LEMA (with 10 times finer temporal discretization)

Variables

Moment (s)

Reference

Tolerance

\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\)

30

1.762 10—4

0.7%

\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\)

30

1.816 10—4

0.7%