3. Modeling A#
3.1. Characteristics of modeling#
A single element based on a QUAD4 mesh, in D_ PLAN.
Loading and boundary conditions are modelled by:
DDL_IMPO: (NOEUD: N04, DX: 0., DY:0.)
DDL_IMPO: (NOEUD: N03, DX: 0.)
FORCE_NODALE: (NOEUD; (N01 N02), FX: \(-\frac{1}{2}{\sigma }_{d}(t)\), FY: \(-\frac{1}{2}{\tau }_{d}(t)\))
FORCE_NODALE: (NOEUD; (N01 N04), FX: \(-\frac{1}{2}{\tau }_{d}(t)\))
FORCE_NODALE: (NOEUD; (N03 N04), FY: \(\frac{1}{2}{\tau }_{d}(t)\))
FORCE_NODALE: (NOEUD; (N02 N03), FX: \(\frac{1}{2}{\tau }_{d}(t)\))
where \({\sigma }_{d}(t)\) and \({\tau }_{d}(t)\) are the positive functions defined above [§1.3].
3.2. Tested sizes and results#
Behavior LEMAITRE (THETA =0.5)
Variables |
Moment (s) |
Reference |
Tolerance |
\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\) |
30 |
1.7620 10—4 |
|
\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\) |
30 |
1.81585 10—4 |
|
\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\) |
3630 |
1.9030 10—3 |
|
\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\) |
3630 |
2.0789 10—3 |
|
\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\) |
3660 |
1.9130 10—3 |
|
\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\) |
3660 |
2.1906 10—3 |
|
\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\) |
3720 |
1.8740 10—3 |
|
\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\) |
3720 |
3.1813 10—3 |
|
Behavior VISC_ENDO_LEMA (with 10 times finer temporal discretization)
Variables |
Moment (s) |
Reference |
Tolerance |
\({\varepsilon }_{{\nu }_{\mathrm{xx}}}\) |
30 |
1.762 10—4 |
|
\({\varepsilon }_{{\nu }_{\mathrm{xy}}}\) |
30 |
1.816 10—4 |
|