7. E modeling#

7.1. Characteristics of modeling E#

Same as modeling A. The behavior used is Norton, with explicit integration (RUNGE_KUTTA)

The reference solution is identical to modeling A.

7.2. Tested sizes and results#

Maille

Point

Moment \((s)\)

Component

Reference

Tolerance (%)

\(\mathrm{MA1}\)

\(1\)

\(\mathrm{EPXX}\)

\(6.125\times {10}^{-7}\)

\(0.2\)

\(\mathrm{EPYY}\)

\(-4.684\times {10}^{-7}\)

\(0.2\)

\(\mathrm{MA1}\)

\(1\)

\(\mathrm{EPXX}\)

\(7.056\times {10}^{-4}\)

\(0.2\)

\(\mathrm{EPYY}\)

\(-5.720\times {10}^{-4}\)

\(0.2\)

\(\mathrm{MA1}\)

\(1\)

\(\mathrm{EPXX}\)

\(7.061\times {10}^{-4}\)

\(0.2\)

\(\mathrm{EPYY}\)

\(-5.724\times {10}^{-4}\)

\(0.2\)

\(\mathrm{MA1}\)

\(1\)

\(\mathrm{EPXX}\)

\(7.061\times {10}^{-4}\)

\(0.2\)

\(\mathrm{EPYY}\)

\(-5.724\times {10}^{-4}\)

\(0.2\)

\(\mathrm{MA1}\)

\(1\)

\(\mathrm{EPXX}\)

\(-2.443\times {10}^{-5}\)

\(0.2\)

\(\mathrm{EPYY}\)

\(1.377\times {10}^{-4}\)

\(0.2\)

\(\mathrm{MA1}\)

\(1\)

\(\mathrm{EPXX}\)

\(-7.788\times {10}^{-4}\)

\(0.2\)

\(\mathrm{EPYY}\)

\(8.423\times {10}^{-4}\)

\(0.2\)

\(\mathrm{MA1}\)

\(1\)

\(\mathrm{EPXX}\)

\(-1.534\times {10}^{-3}\)

\(0.2\)

\(\mathrm{EPYY}\)

\(1.432\times {10}^{-3}\)

\(0.2\)