Reference problem ===================== Geometry --------- Consider a 1m long bar on the :math:`X` axis, going from node :math:`A` to node :math:`B`. Material properties ---------------------- The material has an elastic part: • :math:`E=190000\mathit{MPa}` • :math:`\mathrm{\nu }=0.1` The law is one-dimensional, :math:`\mathrm{\nu }` is not used. The part corresponding to the relaxation law of class 1 cable, for modeling A and C: • :math:`\mathit{fprg}=1800.0\mathit{MPa}`, • :math:`\mathit{kecoul}=0.800646195576`, cf. note [:ref:`R5.03.09 `] for unity. The following parameters are dimensionless: • :math:`\mathit{necoul}=8.50471392583` • :math:`\mathit{necrou}=1.45855523878` • :math:`\mathit{becrou}=49503.9155816` • :math:`\mathit{cecrou}=33211.7441074` The part corresponding to the relaxation law of class 2 cable, for modeling B: • :math:`\mathit{fprg}=1800.0\mathit{MPa}`, • :math:`\mathit{kecoul}=1.45558790406`, cf. note [:ref:`R5.03.09 `] for unity. The following parameters are dimensionless: • :math:`\mathit{necoul}=6.10743489945` • :math:`\mathit{necrou}=1.33140738573` • :math:`\mathit{becrou}=47893.0394375` • :math:`\mathit{cecrou}=32941.1476218` Boundary conditions and loads ------------------------------------- Node :math:`A` is embedded, at node :math:`B` the displacement is imposed in the direction :math:`X`. Initial conditions -------------------- Nil.