Reference problem ===================== Geometry --------- A rectangular plate of width :math:`a` and length :math:`b`, supported on a spring mat. .. image:: images/100030FA000069D50000217DD7F22CAC5AE4B35F.svg :width: 584 :height: 184 .. _RefImage_100030FA000069D50000217DD7F22CAC5AE4B35F.svg: **Figure** 1.1-a **: Diagram of the plate and springs in the plane** :math:`(y,z)` **.** Dimensions: :math:`a=1.00m` :math:`b=2.00m` :math:`\mathrm{ep}=0.30m` Material properties ---------------------- Young's module: :math:`2.0E+11\mathit{Pa}` Poisson's ratio: :math:`0.3` Overall spring pad stiffness: :math:`K\mathrm{=}10000.0N\mathrm{/}m` Spring pad stiffness density: :math:`k=\frac{K}{(ab)}=5000N/{m}^{3}` Boundary conditions and loads ------------------------------------- The load is a pressure loading of the form :math:`P=\mathrm{p.}{(y-b)}^{2}`, with :math:`p=\mathrm{5N}/{m}^{4}` Displacements imposed on the ends of the springs not connected to the plate: • in the time interval :math:`[0,1]` the displacement is imposed to 0.0 according to :math:`\mathit{DX}`, :math:`\mathrm{DY}` and :math:`\mathrm{DZ}`, • in the time interval :math:`[1,2]` the move is imposed to 0.0 according to :math:`\mathrm{DX}` and :math:`\mathrm{DY}`. Next :math:`\mathrm{DZ}` it is imposed by the :math:`\mathrm{Dz}=(t-1.0)\ast 0.5E-02` function. Initial conditions -------------------- Not applicable for static analysis.