Benchmark solution ===================== Equations of balance --------------------- Effort at point :math:`\mathit{A1}` :math:`\mathit{Fa}\mathrm{=}` .. image:: images/Object_3.svg :width: 601 :height: 77 .. _RefImage_Object_3.svg: Effort at point :math:`\mathit{B1}` :math:`\mathit{Fb}\mathrm{=}` .. image:: images/Object_4.svg :width: 601 :height: 77 .. _RefImage_Object_4.svg: Effort due to the wind * Wind speed at one point :math:`M\mathrm{\in }\mathit{barre}` :math:`{V}_{r}\mathrm{=}` .. image:: images/Object_5.svg :width: 601 :height: 77 .. _RefImage_Object_5.svg: with :math:`\mathit{Vvx}`, :math:`\mathit{Vvy}`: wind speed along the :math:`x` axis and the :math:`y` axis. * Relative speed perpendicular to the bar at point :math:`M`: :math:`{V}_{p}\mathrm{=}` .. image:: images/Object_6.svg :width: 601 :height: 77 .. _RefImage_Object_6.svg: * Force due to wind at one point :math:`M` :math:`{\mathit{Fvent}}_{(M)}\mathrm{=}{\mathit{Fcx}}_{(M)}` .. image:: images/Object_7.svg :width: 601 :height: 77 .. _RefImage_Object_7.svg: In our case we choose :math:`{\mathit{Fcx}}_{(M)}\mathrm{=}\mathrm{\parallel }{V}_{p}\mathrm{\parallel }` So we get :math:`{\mathit{Fvent}}_{(M)}\mathrm{=}{V}_{p}` * Resultant of the force due to the wind on the bar Wind = .. image:: images/Object_8.svg :width: 601 :height: 77 .. _RefImage_Object_8.svg: Equation of balance: :math:`\mathit{Fa}+\mathit{Fb}+\mathit{Fvent}\mathrm{=}0` Reference quantities and results ----------------------------------- Displacement of points :math:`\mathit{A1}` and :math:`\mathit{B1}` at the times: :math:`1.s`, :math:`1.05s` and :math:`2.s`. These times correspond to wind speeds of :math:`10`, :math:`15` and :math:`\mathrm{20m}\mathrm{/}s` respectively. The resolution of the 3 equilibrium equations, projection of :math:`\mathit{Fa}+\mathit{Fb}+\mathit{Fvent}\mathrm{=}0`, is done by iterations. The 3 unknowns of the problem are the position of the center of gravity of the bar :math:`G`: :math:`(x,y)` and the variation of the angle: :math:`\theta`. In *Code_Aster*, the wind effect is taken into account by a force distributed along the line element. The expression for the modulus of this distributed force is as follows: :math:`{\mathit{Fcx}}_{(v)}\mathrm{=}\frac{1}{2}\mathrm{.}\rho \mathrm{.}{V}^{2}\mathrm{.}\mathit{Cx}(v)\mathrm{.}{D}_{h}` .. csv-table:: "where", ":math:`{\mathit{Fcx}}_{(v)}`: is the modulus of the force distributed along the cable in :math:`N\mathrm{/}m`, depending on the speed." "", ":math:`\rho`: is the density of the air in :math:`\mathit{kg}\mathrm{/}{m}^{3}`. :math:`V`: is the relative speed of the cable in :math:`m\mathrm{/}s`. :math:`\mathit{Cx}(v)`: is the drag coefficient of the cable, depending on the relative speed. :math:`{D}_{h}`: is the hydraulic diameter of the cable in :math:`m`." To obtain a simple analytical reference solution, the function :math:`{\mathit{Fcx}}_{(\mathit{Vp})}` is taken to be equal to :math:`\mathrm{\parallel }{V}_{p}\mathrm{\parallel }`. In the *Code_Aster* command file the :math:`\mathit{Fcxv}` function is therefore defined as follows: .. code-block:: text FCXV = DEFI_FONCTION ( NOM_PARA =' VITE ', VALE =( 0.0, 0.0, 10.0, 10.0), PROL_GAUCHE =' LINEAIRE ', PROL_DROITE =' LINEAIRE ', ) Uncertainties about the solution ---------------------------- None. The balance equation is solved by iterations with an error less than :math:`1.0E\mathrm{-}09`. Bibliographical reference ------------------------- *HM77 /01/046/A. "Project M7-01-70. Evolution of the*Code_Aster* to better take into account dynamic wind loads on line elements".