Benchmark solution ===================== Calculation of the reference solution ---------------------------------- Here we consider the case of a triaxial test for which the confinement stresses are applied in the directions :math:`x` and :math:`z` and for which the imposed deformation direction is the direction :math:`y`. It is also assumed that the parameter :math:`\eta` is independent of the hardening parameter :math:`\gamma`, that is to say :math:`{\phi }^{\mathit{end}}\mathrm{=}{\phi }^{\mathit{rup}}\mathrm{=}{\phi }^{\mathit{res}}`: it is then possible to calculate an analytical solution to the problem. The plasticity and flow criteria are written as: .. image:: images/Object_30.svg :width: 348 :height: 189 .. _RefImage_Object_30.svg: We consider a situation of increasing loading for which the preceding equations can be written non-incrementally: .. image:: images/Object_31.svg :width: 348 :height: 189 .. _RefImage_Object_31.svg: The elasticity relationships give: .. image:: images/Object_32.svg :width: 348 :height: 189 .. _RefImage_Object_32.svg: that is to say: .. image:: images/Object_33.svg :width: 348 :height: 189 .. _RefImage_Object_33.svg: with :math:`{\sigma }_{3}^{0}` and :math:`{\sigma }_{1}^{0}` the values of :math:`{\sigma }_{1}` and :math:`{\sigma }_{3}` at the start of loading. It therefore remains to calculate :math:`{\sigma }_{1}` as a function of :math:`\gamma` using the plasticity criterion to obtain :math:`\gamma`, :math:`{\sigma }_{1}` and :math:`{\varepsilon }_{3}`. **1st case:** :math:`\gamma \mathrm{\le }{\gamma }^{\mathit{rup}}` By noting .. image:: images/Object_42.svg :width: 348 :height: 189 .. _RefImage_Object_42.svg: and .. image:: images/Object_43.svg :width: 348 :height: 189 .. _RefImage_Object_43.svg: where .. image:: images/Object_44.svg :width: 348 :height: 189 .. _RefImage_Object_44.svg: , .. image:: images/Object_45.svg :width: 348 :height: 189 .. _RefImage_Object_45.svg: , .. image:: images/Object_46.svg :width: 348 :height: 189 .. _RefImage_Object_46.svg: and .. image:: images/Object_47.svg :width: 348 :height: 189 .. _RefImage_Object_47.svg: are given in the reference documentation of the law of behavior, :math:`\gamma` is a solution of the polynomial of degree 2: .. image:: images/Object_49.svg :width: 348 :height: 189 .. _RefImage_Object_49.svg: , with :math:`\gamma` in the :math:`\mathrm{[}\mathrm{0,}{\gamma }^{\mathit{rup}}\mathrm{]}` interval. **2nd case:** :math:`{\gamma }^{\mathit{rup}}\mathrm{\le }\gamma \mathrm{\le }{\gamma }^{\mathit{res}}` Using the notations from the reference documentation of the amended Hoek-Brown law for a, d, c and .. image:: images/Object_52.svg :width: 348 :height: 189 .. _RefImage_Object_52.svg: , :math:`\gamma` is a solution of the polynomial of degree 2: .. image:: images/Object_54.svg :width: 348 :height: 189 .. _RefImage_Object_54.svg: **3rd case:** :math:`{\gamma }^{\mathit{res}}\mathrm{\le }\gamma` In this case :math:`{\sigma }_{1}` is constant: .. image:: images/Object_57.svg :width: 348 :height: 189 .. _RefImage_Object_57.svg: and .. image:: images/Object_58.svg :width: 348 :height: 189 .. _RefImage_Object_58.svg: . Benchmark results ---------------------- Constraints :math:`{\sigma }_{\mathit{xx}}({\sigma }_{3})`, :math:`{\sigma }_{\mathit{yy}}({\sigma }_{1})`, and :math:`{\sigma }_{\mathit{zz}}({\sigma }_{3})` at point :math:`D`. Move :math:`{\varepsilon }_{\mathit{xx}}({\varepsilon }_{3})` and :math:`{\varepsilon }_{\mathit{yy}}({\varepsilon }_{1})` to point :math:`D`.