1. Reference problem#

1.1. Geometry#

Consider a notched cylindrical test piece:

  • diameter of the test piece: \(18\mathrm{mm}\),

  • notch radius: \(5\mathrm{mm}\).

1.2. Material properties#

We adopt a Von Mises elasto-plastic behavior law with isotropic work hardening TRACTION whose traction curve is given point by point:

\(\varepsilon\)

0.0027

0.005

0.005

0.01

0.01

0.015

0.02

0.03

0.04

0.05

0.05

0.05

0.075

0.075

0.1

\(\sigma\) (\(\mathit{MPa}\))

555

589

589

589

631

631

657

704

725

741

741

772

794

0.125

0.15

0.2

0.2

0.3

0.3

0.4

0.5

0.6

0.7

0.8

0.8

0.9

812

827

851

887

887

97

912

933

950

965

978

990

The deformations used in the behavior relationship are linearized deformations. Young’s modulus \(E\) is \(200\mathit{GPa}\) while the Poisson’s ratio \(\nu\) is equal to \(\mathrm{0,3}\).

The coefficients of the Weibull and Bordet models used are as follows:

\(m=8\),

\({V}_{0}\mathrm{=}100\mu m\),

\({\sigma }_{u}\mathrm{=}2630\mathit{MPa}\),

\({\sigma }_{\mathit{ys}\mathrm{,0}}\mathrm{=}{\sigma }_{\mathit{ys}}\mathrm{555MPa}\),

\({\sigma }_{\mathit{th}}\text{=}\mathrm{600MPa}\).

1.3. Boundary conditions and loads#

With reference to the figure in [§3.1] the boundary conditions are as follows:

  • \(\mathrm{BC}\): displacement imposed according to \((Y)\),

  • \(\mathrm{OA}\): movements blocked according to \((Y)\),

  • \(\mathrm{OB}\): movements blocked following \((X)\).

1.4. Initial conditions#

Zero stresses and deformations.