2. Benchmark solution#

2.1. Calculation method used for reference solutions#

The whole of this demonstration can be read in more detail in document \([1]\)

The stress tensor is written as:

\(\sigma =(\begin{array}{ccc}0& 0& 0\\ 0& 0& 0\\ 0& 0& {\sigma }_{z}\end{array})\)

As a result of loading, we have:

\(\{\begin{array}{c}{\varepsilon }_{z}-{\varepsilon }_{\nu z}=\frac{{\sigma }_{z}}{E}\\ {\varepsilon }_{\theta }-{\varepsilon }_{\nu \theta }=-\frac{\nu }{E}{\sigma }_{z}\\ {\varepsilon }_{r}-{\varepsilon }_{\nu r}=-\frac{\nu }{E}{\sigma }_{z}\end{array}\) and \(\dot{{\varepsilon }_{\nu }}=\frac{3}{2}g(\sigma \text{*})\frac{{\sigma }^{D}}{\sigma \text{*}}\)

therefore

\(\{\begin{array}{c}\dot{{\varepsilon }_{\nu z}}=g({\sigma }_{z})\\ \dot{{\varepsilon }_{\nu \theta }}=-\frac{1}{2}g({\sigma }_{z})\\ \dot{{\varepsilon }_{\nu r}}=-\frac{1}{2}g({\sigma }_{z})\end{array}\)

If \(t\le {t}_{0}\), we have \({\varepsilon }_{z}=\frac{{\varepsilon }_{0}}{{t}_{0}}t\),

Be \(a=\sqrt{\frac{{\varepsilon }_{0}}{{t}_{0}}}\)

We get \({\varepsilon }_{z}={a}^{2}t\)

Substituting, we find:

\(\dot{{\varepsilon }_{\nu z}}=g(({a}^{2}t-{\varepsilon }_{\nu z})E)\)

We set \(E=1\) and \(z={a}^{2}t-{\varepsilon }_{\nu z}\), we get: \(\dot{z}={a}^{2}–{z}^{2}\)

Integrating with \(z(0)=0\) we get:

\(z=a\mathrm{tanh}(\mathrm{at})\)

For \(t\le {t}_{0}\)

\(\{\begin{array}{c}{\sigma }_{r}={\sigma }_{\theta }=0\\ {\sigma }_{z}=a\mathrm{tanh}(\mathrm{at})\\ {\varepsilon }_{r}={\varepsilon }_{\theta }=a[(\frac{1}{2}-\nu )\mathrm{tanh}(\mathrm{at})-\frac{1}{2}\mathrm{at}]\\ {\varepsilon }_{z}={a}^{2}t\\ w=\mathrm{ar}[(\frac{1}{2}-\nu )\mathrm{tanh}(\mathrm{at})-\frac{1}{2}\mathrm{at}]\end{array}\)

If \(t\ge {t}_{0}\)

\({\varepsilon }_{z}={a}^{2}{t}_{0}\)

\(\dot{{\varepsilon }_{\nu z}}=g({a}^{2}{t}_{0}-{\varepsilon }_{\nu z})={({a}^{2}{t}_{0}-{\varepsilon }_{\nu z})}^{2}\)

What results when integrating:

\({\varepsilon }_{\nu z}={a}^{2}{t}_{0}–\frac{1}{\frac{1}{a\mathrm{tanh}({\mathrm{at}}_{0})}+t–{t}_{0}}\)

So we finally have

\(\{\begin{array}{c}{\sigma }_{r}={\sigma }_{\theta }=0\\ {\sigma }_{z}=\frac{1}{\frac{1}{a\mathrm{tanh}({\mathrm{at}}_{0})}+t–{t}_{0}}\\ {\varepsilon }_{r}={\varepsilon }_{\theta }=(\frac{1}{2}-\nu )\frac{1}{\frac{1}{a\mathrm{tanh}({\mathrm{at}}_{0})}+t–{t}_{0}}–\frac{1}{2}{a}^{2}{t}_{0}\\ {\varepsilon }_{z}={a}^{2}{t}_{0}\\ w=r\left[(\frac{1}{2}-\nu )\frac{1}{\frac{1}{a\mathrm{tanh}({\mathrm{at}}_{0})}+t–{t}_{0}}–\frac{1}{2}{a}^{2}{t}_{0}\right]\end{array}\)

2.2. Reference quantities#

  • Move \(\mathrm{DX}\) to node \(B\)

  • Constraints \(\mathrm{SIXX}\), \(\mathrm{SIYY}\), and \(\mathrm{SIZZ}\) at node \(B\)

2.3. Benchmark results#

Size

Point

Moments

Reference

\(\mathrm{DX}\)

\(B\)

4

\(-0.2109\)

\(\mathrm{SIXX}\)

\(B\)

4

\(0.\)

\(\mathrm{SIYY}\)

\(B\)

4

\(0.2616\)

\(\mathrm{SIZZ}\)

\(B\)

4

\(0.\)

2.4. Uncertainty about the solution#

Analytical solution

2.5. Bibliographical references#

[1] Ph. De BONNIERES, M. ZIDI: Introduction of viscoplasticity into the Cyrano3 thermomechanics module: Principle, description and validation, Note HI-71/8334.