Reference solutions ====================== Calculation method used for reference solutions ---------------------------------------------------------- The whole of this demonstration can be read in more detail in the [:ref:`bib1 `] document. In the case of a linear isotropic viscoelastic material, the behavior over time can be described using two functions .. image:: images/Object_6.svg :width: 29 :height: 21 .. _RefImage_Object_6.svg: and .. image:: images/Object_7.svg :width: 29 :height: 21 .. _RefImage_Object_7.svg: so that the deformations and the stresses can be written as: .. image:: images/Object_8.svg :width: 29 :height: 21 .. _RefImage_Object_8.svg: where :math:`{I}_{3}` refers to the identity matrix of rank 3 and :math:`\text{*}` the convolution product: .. image:: images/Object_10.svg :width: 29 :height: 21 .. _RefImage_Object_10.svg: The equivalent thermoelastic problem, using the Laplace transform, is: .. image:: images/Object_11.svg :width: 29 :height: 21 .. _RefImage_Object_11.svg: By eliminating the "+" sign: .. image:: images/Object_12.svg :width: 29 :height: 21 .. _RefImage_Object_12.svg: either, .. image:: images/Object_13.svg :width: 29 :height: 21 .. _RefImage_Object_13.svg: .. image:: images/Object_14.svg :width: 29 :height: 21 .. _RefImage_Object_14.svg: According to the equilibrium equation, we have .. image:: images/Object_15.svg :width: 29 :height: 21 .. _RefImage_Object_15.svg: , we get: .. image:: images/Object_16.svg :width: 29 :height: 21 .. _RefImage_Object_16.svg: , .. image:: images/Object_17.svg :width: 29 :height: 21 .. _RefImage_Object_17.svg: , .. image:: images/Object_18.svg :width: 29 :height: 21 .. _RefImage_Object_18.svg: which when integrating with respect to r gives: .. image:: images/Object_19.svg :width: 29 :height: 21 .. _RefImage_Object_19.svg: , Boundary conditions .. image:: images/Object_20.svg :width: 29 :height: 21 .. _RefImage_Object_20.svg: give: .. image:: images/Object_21.svg :width: 29 :height: 21 .. _RefImage_Object_21.svg: Using the initial notations, we therefore have: .. image:: images/Object_22.svg :width: 29 :height: 21 .. _RefImage_Object_22.svg: Or, taking the inverse transform, .. image:: images/Object_23.svg :width: 29 :height: 21 .. _RefImage_Object_23.svg: We deduce .. image:: images/Object_24.svg :width: 29 :height: 21 .. _RefImage_Object_24.svg: and :math:`w`: .. image:: images/Object_25.svg :width: 29 :height: 21 .. _RefImage_Object_25.svg: Benchmark results ---------------------- Move :math:`\mathrm{DX}` on node :math:`B` Uncertainty about the solution --------------------------- :math:`\text{0\%}`: analytical solution Bibliographical references --------------------------- Ph. Of BONNIERES, two analytical solutions to axisymmetric problems in linear viscoelasticity and with unilateral contact, Note HI-71/8301