Reference problem ===================== Geometry --------- .. image:: images/100000000000012D0000019FF96BCAF98D7BE59F.png :width: 2.1654in :height: 2.8819in .. _RefImage_100000000000012D0000019FF96BCAF98D7BE59F.png: +--------------------+----------+ |Cylinder dimensions: | +--------------------+----------+ |:math:`{R}_{0}` |:math:`1m`| +--------------------+----------+ |:math:`{R}_{1}` |:math:`2m`| +--------------------+----------+ **Figure 1.1-a: Hollow cylinder cutting and loading** Material properties ------------------------ Young's module: :math:`E\mathrm{=}1\mathit{MPa}` Poisson's ratio: :math:`\nu \mathrm{=}0.3` Law of LEMAITRE: :math:`g(\sigma ,\lambda ,T)\mathrm{=}{(\frac{1}{K}\frac{\sigma }{{\lambda }^{\frac{1}{m}}})}^{n}` with :math:`\frac{1}{K}\mathrm{=}1`, :math:`\frac{1}{m}\mathrm{=}0`, :math:`n\mathrm{=}1` Law LEMA_SEUIL: :math:`g(\sigma ,\lambda ,T)\mathrm{=}A(\frac{2}{\sqrt{3}}\sigma )\Phi` with :math:`A\mathrm{=}\frac{\sqrt{3}}{2}`, :math:`\Phi \mathrm{=}1` all over the mesh :math:`S\mathrm{=}{10}^{\mathrm{-}10}` given the value of the various material parameters, the two laws are absolutely identical and can therefore be compared to the same analytical solution. Boundary conditions and loading ------------------------------------ **Boundary conditions:** The cylinder is locked at :math:`\mathit{DY}` on the :math:`[\mathrm{AB}]` and :math:`[\mathrm{CD}]` sides. **Charging:** The cylinder is subjected to internal pressure on :math:`\mathrm{[}\mathit{DA}\mathrm{]}\mathit{P0}\mathrm{=}1.E\mathrm{-}3\mathit{MPa}`