Reference problem ===================== Geometry --------- The geometry used in this test case is a reinforced concrete plate with a thickness of :math:`e=0.1\text{m}` and a length of :math:`l=1\text{m}`. .. image:: images/Object_4.svg :width: 338 :height: 207 .. _RefImage_Object_4.svg: **Figure** 1.1-a **: Geometry studied** The characteristics of the steel sheets of the reinforced concrete plate are: * Upper sheet: section per linear meter :math:`=0.05{m}^{\mathrm{²}}/\mathrm{ml}`; eccentricity with respect to the middle sheet: :math:`+0.03m`, * Lower sheet: section per linear meter :math:`=0.05{m}^{\mathrm{²}}/\mathrm{ml}`; eccentricity compared to the middle sheet: :math:`–0.03m`. Material properties ------------------------ The material characteristics for multi-layer concrete modeling with steel reinforcements (DKT and GRILLE_EXCENTRE) are summarized in the following table. .. csv-table:: "**Modeling**", "**Young Module** :math:`N/{m}^{\mathrm{²}}` ", "**Fish Coefficient**", "**Density** :math:`\mathrm{kg}/{m}^{3}`" "Concrete (plate DKT)", "1. 1010", "0.0", "2500" "Steel (GRILLE_EXCENTRE)", "1. 1011", "0.0", "7800" Boundary conditions and loads ------------------------------------- On the :math:`A` (:math:`\mathrm{B0X}`) side of the plate are embedded the movements :math:`{u}_{x}={u}_{y}={u}_{z}=0`, as well as the rotations :math:`{\theta }_{x}={\theta }_{y}={\theta }_{z}=0`. During the modal calculation, displacement :math:`{u}_{y}=0` is blocked everywhere on the plate. A linear force is applied to the :math:`\mathrm{B1X}` side (side opposite :math:`\mathrm{B0X}`) in the direction :math:`(0.0\mathrm{,0}.0\mathrm{,1}\mathrm{,0})` and depends on the value :math:`{F}_{0}={10}^{6}N`. In the case of dynamic calculation, a sinusoidal linear force is applied on the :math:`\mathrm{B1X}` side in the :math:`(0.0\mathrm{,0}.0\mathrm{,1}.0)` direction. The sine wave frequency is :math:`20\mathrm{Hz}`. The duration of the request is :math:`\mathrm{0,1}s`. Initial conditions -------------------- In the initial state, displacements and speeds are zero everywhere.