3. Modeling A#

3.1. Characteristics of the mesh#

Number of stitches: 1 HEXA8

Number of knots: 8

3.2. Tested sizes and results#

Identification

Reference

Aster

% difference

Plastic vibratory natural frequency

\(\mathrm{Tps}\) = 1.01

3.58128E-02

3.5812661359567D-02

-3.87E-04

\(\mathrm{Tps}\) = 1.06

3.58128E-02

3.5812661359997D-02

-3.87E-04

\(\mathrm{Tps}\) = 1.25

3.58128E-02

3.5812661358541D-02

-3.87E-04

\(\mathrm{Tps}\) = 1.49

3.58128E-02

3.5812661355801D-02

-3.87E-04

Elastic vibratory natural frequency

\(\mathrm{Tps}\) = 1.51

3.58128E-01

3.5812779545194D-01

-5.71E-05

\(\mathrm{Tps}\) = 1.52

3.58128E-01

3.5812779545194D-01

-5.71E-05

\(\mathrm{Tps}\) = 1.56

3.58128E-01

3.5812779545194D-01

-5.71E-05

\(\mathrm{Tps}\) = 1.75

3.58128E-01

3.5812779545194D-01

-5.71E-05

\(\mathrm{Tps}\) = 1.99

3.58128E-01

3.5812779545194D-01

-5.71E-05

Coefficient of the first critical load

\(\mathrm{Tps}\) = 1.001

-2.854285714E+01

-2.85701899729E+01

0.096

These tests are completed by two tests on the DEPL_VIBR vibratory mode calculated with MODE_VIBR. More precisely, we will test the value of this field in two nodes:

  • GROUP_NO =”A” (node in (0,0,0): which is embedded, we must therefore find an identically zero displacement,

  • GROUP_NO =”H” (node in (0,1,1)): we do a non-regression test in the \(\mathrm{DY}\) direction.

Identification

Reference

Aster

% difference

DEPL_VIBR in “A’Next \(\mathrm{DX}\)

\(\mathrm{Tps}\) = 1.2

DEPL_VIBR in “H’next \(\mathrm{DY}\)

\(\mathrm{Tps}\) = 1.2

-0.49999288483407

-0.49999288483077

6.61E-10

This test makes it possible to validate the calculations of critical buckling loads, frequencies and vibratory natural modes in DYNA_NON_LINE.