3. Modeling A#
3.1. Characteristics of the mesh#
Number of stitches: 1 HEXA8
Number of knots: 8
3.2. Tested sizes and results#
Identification |
Reference |
Aster |
% difference |
|
Plastic vibratory natural frequency |
\(\mathrm{Tps}\) = 1.01 |
3.58128E-02 |
3.5812661359567D-02 |
-3.87E-04 |
\(\mathrm{Tps}\) = 1.06 |
3.58128E-02 |
3.5812661359997D-02 |
-3.87E-04 |
|
\(\mathrm{Tps}\) = 1.25 |
3.58128E-02 |
3.5812661358541D-02 |
-3.87E-04 |
|
\(\mathrm{Tps}\) = 1.49 |
3.58128E-02 |
3.5812661355801D-02 |
-3.87E-04 |
|
Elastic vibratory natural frequency |
\(\mathrm{Tps}\) = 1.51 |
3.58128E-01 |
3.5812779545194D-01 |
-5.71E-05 |
\(\mathrm{Tps}\) = 1.52 |
3.58128E-01 |
3.5812779545194D-01 |
-5.71E-05 |
|
\(\mathrm{Tps}\) = 1.56 |
3.58128E-01 |
3.5812779545194D-01 |
-5.71E-05 |
|
\(\mathrm{Tps}\) = 1.75 |
3.58128E-01 |
3.5812779545194D-01 |
-5.71E-05 |
|
\(\mathrm{Tps}\) = 1.99 |
3.58128E-01 |
3.5812779545194D-01 |
-5.71E-05 |
|
Coefficient of the first critical load |
\(\mathrm{Tps}\) = 1.001 |
-2.854285714E+01 |
-2.85701899729E+01 |
0.096 |
These tests are completed by two tests on the DEPL_VIBR vibratory mode calculated with MODE_VIBR. More precisely, we will test the value of this field in two nodes:
GROUP_NO =”A” (node in (0,0,0): which is embedded, we must therefore find an identically zero displacement,
GROUP_NO =”H” (node in (0,1,1)): we do a non-regression test in the \(\mathrm{DY}\) direction.
Identification |
Reference |
Aster |
% difference |
|
DEPL_VIBR in “A’Next \(\mathrm{DX}\) |
\(\mathrm{Tps}\) = 1.2 |
|||
DEPL_VIBR in “H’next \(\mathrm{DY}\) |
\(\mathrm{Tps}\) = 1.2 |
-0.49999288483407 |
-0.49999288483077 |
6.61E-10 |
This test makes it possible to validate the calculations of critical buckling loads, frequencies and vibratory natural modes in DYNA_NON_LINE.