Reference problem ===================== Geometry --------- .. image:: images/1000000000000369000002EE6750F35D39BC4406.png :width: 5.7035in :height: 4.6835in .. _RefImage_1000000000000369000002EE6750F35D39BC4406.png: .. image:: images/10000000000003C3000001B66DA929363A3F92B4.png :width: 5.9661in :height: 2.4181in .. _RefImage_10000000000003C3000001B66DA929363A3F92B4.png: **Figure 1.1-a: Geometry (tests ELSA carried out by CEA/EMSI) .** Mesh group: :math:`\mathit{POUTRES}`: set of straight pipes :math:`\mathit{COUDES}`: set of bent pipes :math:`\mathrm{PATVAN},\mathrm{VANNE},\mathrm{ENCBIS1},\mathrm{ENC1},\mathrm{ENC2}` :math:`\mathrm{ENCBIS2},\mathrm{PATBIELA},\mathrm{PATBIELB}` :math:`\mathrm{PATBIELC},\mathrm{BIELA},\mathrm{BIELB},\mathrm{BIELC},\mathrm{CDGVAN}` Node group: :math:`A,\mathrm{...},L` Pipe geometry: :math:`\mathit{SECTION}A` * Mesh groups: :math:`\mathit{POUTRES}` :math:`\mathit{COUDES}` :math:`\mathit{PATVAN}` * :math:`R=8.485\times {10}^{\text{-2}}m` Outer radius * :math:`\mathrm{EP}=7.345\times {10}^{\text{-3}}m` Thickness * Mesh groups: :math:`\mathit{BIELA}`, :math:`\mathrm{BIELB}`, :math:`\mathrm{BIELC}` * :math:`R=38.05\times {10}^{\text{-3}}m` Outer radius * :math:`\mathrm{EP}=4.5\times {10}^{\text{-3}}m` Thickness :math:`\mathit{SECTION}B` * Mesh groups: :math:`\mathrm{PATBIELC}` * :math:`R=4.55\times {10}^{\text{-2}}` Radius * Mesh groups: :math:`\mathit{PATBIELA}` * :math:`\mathrm{R1}=8.6\times {10}^{\text{-2}}m` Radius at end 1 * :math:`\mathrm{R2}=4.55\times {10}^{\text{-2}}m` Radius at end 2 .. image:: images/100000000000024B000001E0C4ED8008FD0CEAD8.png :width: 6.1146in :height: 5in .. _RefImage_100000000000024B000001E0C4ED8008FD0CEAD8.png: **Figure 1.1-b: Geometry modeling.** Elastic properties of materials ----------------------------------- * :math:`\mathrm{POUTRES}`: * * Young's modulus: :math:`E=1.9\times {10}^{11}\mathrm{Pa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` * Density: :math:`\rho =1.30273\times {10}^{4}\mathrm{kg}{m}^{\text{-3}}` * :math:`\mathrm{COUDE1},\mathrm{COUDE2},\mathrm{COUDE3},\mathrm{COUDE4}`: * * Young's modulus: :math:`E=1.9\times {10}^{11}\mathrm{Pa}` * Poisson's ratio: :math:`\nu =0.3` * Density: :math:`\rho =1.47373\times {10}^{4}\mathrm{kg}{m}^{\text{-3}}` * Slope of the traction curve: :math:`D\text{\_}\mathrm{SIGM}\text{\_}\mathrm{EPSI}=7.67\times {10}^{9}N{m}^{\text{-2}}` * Elastic limit: :math:`\mathit{SY}\mathrm{=}121.2\mathrm{\times }{10}^{6}N{m}^{\text{-2}}` * Constant of :math:`\mathrm{PRAGER}`: :math:`C=5.328434\times {10}^{9}` The elastic limit has been reduced in order to plasticize sooner. * :math:`\mathrm{PATVAN}`: * * Young's modulus: :math:`E=1.9\times {10}^{11}\mathrm{Pa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` * Density: :math:`\rho =0.0\mathrm{kg}{m}^{\text{-3}}` * :math:`\mathrm{PATBIELA}`: * * Young's modulus: :math:`E=1.8\times {10}^{11}\mathrm{Pa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` * Density: :math:`\rho =4.43\times {10}^{3}\mathrm{kg}{m}^{\text{-3}}` * :math:`\mathrm{PATBIELC}`: * * Young's modulus: :math:`E=1.8\times {10}^{11}\mathrm{Pa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` * Density: :math:`\rho =6.92\times {10}^{3}\mathrm{Kg}/{m}^{3}` * :math:`\mathrm{BIELA},\mathrm{BIELB},\mathrm{BIELC}`: * * Young's modulus: :math:`E=1.8\times {10}^{11}\mathrm{Pa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` * Density: :math:`\rho =6.86\times {10}^{3}\mathrm{kg}{m}^{\text{-3}}` * :math:`\mathrm{POUTRES}`: * * Young's modulus: :math:`E=1.9\times {10}^{11}\mathrm{Pa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` * Density: :math:`\rho =1.47373\times {10}^{4}\mathrm{kg}{m}^{\text{-3}}` * :math:`\mathrm{PATBIELB}` mass added: :math:`[M]=\left[\begin{array}{ccc}m& 0.& 0.\\ 0.& m& 0.\\ 0.& 0.& m\end{array}\right]` with :math:`m=2.46\mathrm{kg}` * :math:`\mathrm{CDGVAN}` (center of gravity of the valve) added mass: :math:`[M]=\left[\begin{array}{cccccc}m& 0.& 0.& 0.& -{\mathrm{m.e}}_{z}& -{\mathrm{m.e}}_{y}\\ 0.& m& 0.& {\mathrm{m.e}}_{z}& 0.& -{\mathrm{m.e}}_{x}\\ 0.& 0.& m& -{\mathrm{m.e}}_{y}& {\mathrm{m.e}}_{x}& 0.\\ 0.& 0.& 0.& {V}_{\mathrm{xx}}& {V}_{\mathrm{xy}}& {V}_{\mathrm{xz}}\\ 0.& 0.& 0.& 0.& {V}_{\mathrm{yy}}& {V}_{\mathrm{yz}}\\ 0.& 0.& 0.& 0.& 0.& {V}_{\mathrm{zz}}\end{array}\right]` with :math:`\begin{array}{c}{V}_{\mathrm{xx}}={I}_{\mathrm{xx}}+m({e}_{y}^{2}+{e}_{z}^{2})\\ {V}_{\mathrm{yy}}={I}_{\mathrm{yy}}+m({e}_{x}^{2}+{e}_{z}^{2})\\ {V}_{\mathrm{zz}}={I}_{\mathrm{zz}}+m({e}_{x}^{2}+{e}_{y}^{2})\\ {V}_{\mathrm{xy}}={I}_{\mathrm{xy}}-{\mathrm{m.e}}_{x}{e}_{y}\\ {V}_{\mathrm{yz}}={I}_{\mathrm{yz}}-{\mathrm{m.e}}_{y}{e}_{z}\\ {V}_{\mathrm{xz}}={I}_{\mathrm{xz}}-{\mathrm{m.e}}_{x}{e}_{z}\end{array}` * * :math:`m=275\mathrm{kg}` mass * :math:`\left[\begin{array}{c}{I}_{\mathrm{xx}}=2.696123\\ {I}_{\mathrm{yy}}=3.81480\text{}\\ \text{}{I}_{\mathrm{zz}}=0.9166667\\ \text{}{I}_{\mathrm{xy}}={I}_{\mathrm{xy}}={I}_{\mathrm{yz}}=0.\end{array}\right]` mass inertia tensor values * :math:`{e}_{x}={e}_{y}={e}_{z}=0.` component of the mass eccentricity vector The non-linearity is due to the material behavior in the bends. The law of behavior used is: under COMORTEMENT: RELATION =' VMIS_ECMI_LINE ', which corresponds to elastoplasticity with mixed isotropic and linear kinematic work hardening. Boundary conditions and loads ------------------------------------- **Travel required:** * :math:`\mathrm{ENC1},\mathrm{ENCBIS1}`: :math:`\mathit{DX}\mathrm{=}\mathit{DY}\mathrm{=}\mathit{DZ}\mathrm{=}\mathit{DRX}\mathrm{=}\mathit{DRY}\mathrm{=}\mathit{DRZ}\mathrm{=}0` * :math:`\mathrm{ENC2},\mathrm{ENCBIS2}`: :math:`\mathit{DX}\mathrm{=}\mathit{DY}\mathrm{=}\mathit{DZ}\mathrm{=}\mathit{DRX}\mathrm{=}\mathit{DRY}\mathrm{=}\mathit{DRZ}\mathrm{=}0` * :math:`\mathrm{PATBIEL4}`: :math:`\mathrm{DX}=\mathrm{DY}=\mathrm{DZ}=\mathrm{DRZ}=0` * :math:`\mathit{PATBIEL3}`: :math:`\mathit{DRZ}\mathrm{=}0` **Imposed links:** * :math:`\mathrm{PATVAN},\mathrm{VANNE}`: LIAISON_SOLIDE * :math:`\mathrm{PATBIEL3},\mathrm{PATBIEL2}`: LIAISON_UNIF (DX, DY, DZ) **Pressure imposed:** * :math:`\mathrm{COUDES},\mathrm{POUTRES}`: :math:`\mathit{PRES}\mathrm{=}120.5\mathit{Pa}` * **Seismic loading:** * The structure is subjected to seismic loading in direction X. The imposed accelerogram is characterized by a total duration of :math:`\mathrm{40,95}s` and a time step of :math:`\mathrm{0,01}s`. Initial conditions and list of calculation times -------------------------------------------------- The system is initially at rest. To limit time CPU, we will only conduct the numerical simulation until a final moment worth :math:`\mathrm{0,17}s`. At this moment, the level of loading reached is such that plasticity has already occurred. We build a list of optimized calculation times: the time step increasing from :math:`\mathrm{0,01}s` to 0.001 s in order to go linear quickly and to reduce the time step just before plasticization.