Reference problem ===================== Geometry --------- .. image:: images/100005F4000014770000130422CBDAA539531E59.svg :width: 264 :height: 245 .. _RefImage_100005F4000014770000130422CBDAA539531E59.svg: A rigid :math:`\mathit{OP}` pendulum with a length of 1 and a center of gravity :math:`G` oscillates around the point :math:`O`. The angular position of the pendulum is indicated by: :math:`\alpha \mathrm{=}\theta \mathrm{-}\pi` Material properties ----------------------- Pendulum linear mass: :math:`1.\mathrm{kg}/m` Axial stiffness (product of Young's modulus by the area of the straight section): :math:`{1.10}^{8}N` Boundary conditions and loads ------------------------------------- The pendulum is articulated at the fixed point :math:`O`. Under the action of gravity, its :math:`P` end oscillates on the semi-circle :math:`(\Gamma )` with center :math:`O` and radius :math:`1`. There is no friction. Initial conditions -------------------- The pendulum is released without speed from horizontal position :math:`\mathrm{OP}`. :math:`\theta =+\frac{\pi }{2}`, :math:`\dot{\theta }=0`