Benchmark solution ===================== Modeling A -------------- This case models a mass that bounces off an elastic surface (modeling A) Benchmark results ~~~~~~~~~~~~~~~~~~~~~~~~ The mass is released with an initial speed :math:`{V}_{0}` (configuration a), as long as it has not touched the ground, it only experiences gravity. When it touches the elastic ground, it is subjected, in addition to gravity, to a force of the type :math:`k\mathrm{.}\mathrm{\delta }x` (configuration b). Once the rebound is over, it is only subjected to gravity (configuration a) with an initial speed :math:`{V}_{1}`. .. image:: images/10000000000006280000044A084203840137B87C.png :width: 3.9374in :height: 2.7417in .. _RefImage_10000000000006280000044A084203840137B87C.png: **Table** 2.1.1-1 **:** Behavioral model Equation during free fall (configuration a): .. math:: :label: eq-1 m\ mathrm {.} \ ddot {x} =-m\ mathrm {.} g And so, by integration: .. math:: :label: eq-2 x=-g\ mathrm {.} \ frac {{t} ^ {2}} {2}} {2} + {V} _ {0}\ mathrm {.} t The duration of the fall is obtained by solving :math:`x=h`: .. math:: :label: eq-3 {t} _ {\ mathit {fall}} =\ frac {1} {g}}\ left [{V} _ {0} +\ sqrt {{V} _ {0} ^ {2} -2.g\ mathrm {.} h}\ right] Equation during rebound (configuration b): .. math:: : label: eq-4 m\ mathrm {.} \ ddot {x} =-m\ mathrm {.} g+k\ mathrm {.} (h-z) And, therefore: .. math:: : label: eq-5 x= {C} _ {1}\ mathrm {sin} (w\ mathrm {.} \ stackrel {~} {t}) + {C} _ {2}\ mathrm {cos} (w\ mathrm {.} \ stackrel {~} {t}) + (h-g/ {w} ^ {2}) The two constants are valid: .. math:: :label: eq-6 {C} _ {2} =g/ {w} ^ {2}; {C} _ {2}; {C} _ {2}} =\ frac {-1} {w}\ sqrt {{V} _ {O} _ {O} ^ {2} -2.g\ mathrm {.} h} The time corresponding to the detachment is obtained by solving :math:`x=h`: .. math:: :label: eq-7 \ mathrm {tan}\ left (w\ mathrm {.} \ frac {{\ stackrel {~} {t}}}} _ {\ mathit {decol}}} {2}\ right) = {w} ^ {2}\ mathrm {.} \ frac {{C} _ {1}}} {g} B modeling -------------- This case models a mass that bounces off an absorbent surface. Benchmark results ~~~~~~~~~~~~~~~~~~~~~~~~ The mass is released with an initial speed :math:`{V}_{0}` (configuration a), as long as it has not touched the surface, it only experiences gravity. When it touches the absorbent surface, in addition to gravity, it is subjected to a force of the :math:`k\mathrm{.}\mathrm{\delta }x+c\mathrm{.}\dot{x}` type (configuration c). Once the rebound is over, it is only subjected to gravity (configuration a) with an initial speed :math:`{V}_{1}`. .. image:: images/1000000000000628000003FDA7D229F2BC03F93C.png :width: 3.9374in :height: 2.5492in .. _RefImage_1000000000000628000003FDA7D229F2BC03F93C.png: **Table** 2.2.1-1 **:**: ** Behavioral model Equation during free fall (configuration a) .. math:: :label: eq-8 m\ mathrm {.} \ ddot {x} =-m\ mathrm {.} g And so, by integration: .. math:: :label: eq-9 x=-g\ mathrm {.} \ frac {{t} ^ {2}} {2}} {2} + {V} _ {0}\ mathrm {.} t The duration of the fall is obtained by solving :math:`x=h`: .. math:: :label: eq-10 {t} _ {\ mathit {fall}} =\ frac {1} {g}}\ left [{V} _ {0} +\ sqrt {{V} _ {0} ^ {2} -2.g\ mathrm {.} h}\ right] Equation during rebound (configuration c): .. math:: :label: eq-11 m\ mathrm {.} \ ddot {x} =-m\ mathrm {.} g+k\ mathrm {.} (h-z) -c\ mathrm {.} \ dot {x} And so: .. math:: :label: eq-12 x=\ mathrm {exp}\ left (\ frac {-c\ mathrm {.} \ stackrel {~} {t}} {2.m}\ right)\ left [{C} _ {1}\ mathrm {sin}\ left (\ frac {\ mathit {Rd}\ mathrm {.} \ stackrel {~} {t}} {2}\ right) + {C} _ {2}\ mathrm {cos}\ left (\ frac {\ mathit {Rd}\ mathrm {Rd}\ mathrm {.} \ stackrel {~} {t}} {2} {2}\ right)\ right] + (h-g/ {w} ^ {2}) \ textrm {with} \ stackrel {~} {t} =t- {t} _ {\ mathit {fall}} The constants are equal to: .. math:: :label: eq-13 {C} _ {2} =g/ {w} ^ {2}; {C} _ {1} =\ frac {c\ mathrm {.} g-2.k\ mathrm {.} \ sqrt {{V} _ {O} ^ {2} -2.g\ mathrm {.} h}} {k\ mathrm {.} \ sqrt {4.k\ mathrm {.} m- {c} ^ {2}/{m} ^ {2}}}} The time corresponding to the detachment is obtained by solving :math:`x=h` numerically. Uncertainty about solutions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ No uncertainty (analytical solution).