Modeling A ============== Characteristics of modeling ----------------------------------- In this modeling, we use the operator DYNA_VIBRA (see [:ref:`U4.53.03 `]) with the relationship DIS_CHOC. The integration diagram is ADAPT_ORDRE2. In this modeling, the force exerted on mass :math:`{m}_{2}` is cancelled out in :math:`{t}_{2}=\mathrm{0,2}s`. Characteristics of the mesh ---------------------------- The mesh contains 2 discrete single-node meshes (one for each mass) and 1 discrete mesh for the spring. Tested sizes and results ------------------------------ .. csv-table:: "**Type**", "**Instant (** :math:`s` **)**", "**Size**", "**Reference**", "**Aster**", "**Difference (%)**" "Analytics", "0.02"," :math:`{x}_{1}` ", "0. ", "2.0621E-05", "" "Analytics", "0.02"," :math:`{x}_{2}` ", "0.11221", "0.11221", "0.11221", "0" "Analytics", "0.15"," :math:`{x}_{1}` ", "1.35332", "1.35329", "-0.002" "Analytics", "0.15"," :math:`{x}_{2}` ", "1.80751", "1.80751", "1.80751", "0" "Analytics", "0.34"," :math:`\dot{x}{}_{1}` ", "0. ", "-3.3802E-5", "" "Analytics", "0.34"," :math:`{x}_{2}` ", "3.96813", "3.97012", "0.05" .. csv-table:: "**Type**", "**Size (s)**", "**Reference**", "**Aster**", "**% difference**" "Analytics", ":math:`{t}_{1}` ", "0.03512", "0.03520", "0.23" "Analytics", ":math:`{t}_{3}` ", "0.31492", "0.31500", "0.03" notes --------- The difference in :math:`\text{\%}` is not given for cases where the reference value is 0, but it is observed that the absolute difference is of the order of :math:`{10}^{-5}`.