Modeling A ============== Characteristics of modeling ------------------------ The mass-spring system is modelled by a discrete element DIS_T. .. image:: images/100005840000064E00000AA5B1C8DC96F216C0DC.svg :width: 81 :height: 137 .. _RefImage_100005840000064E00000AA5B1C8DC96F216C0DC.svg: Numeric data: .. csv-table:: "for the mass-spring system:", ":math:`m=\mathrm{450 }\mathrm{kg}`" "for the floor:", ":math:`{k}_{\mathrm{0 }}={10}^{\mathrm{5 }}N/m`" "for non-linearity:", ":math:`{x}_{\mathrm{0 }}=\mathrm{0,1 }m`; :math:`a=\mathrm{0,01}` and :math:`\omega =\pi /4`." The time integration is carried out with the Euler algorithm or the Devogelaere algorithm and a time step of 0.02 seconds. The calculations are archived every time step. We consider reduced damping :math:`{\xi }_{i}` to zero for all the calculated modes. Characteristics of the mesh ---------------------------- The mesh consists of a node and a POI1 type mesh. Tested sizes and results ------------------------------ We check the natural frequency of the oscillator as well as the relative movements of the node :math:`\mathrm{NO1}` at different times (for the integration algorithm EULER). .. csv-table:: "**Frequency (Hz)**", "**Reference**" "", "2.37254" Relative displacement of node :math:`\mathrm{NO1}` with the Euler numerical integration algorithm: .. csv-table:: "**Time (s)**", "**Reference**" "2", "0.01" "6", "—0.01" "10", "0.01" "14", "—0.01" "18", "0.01" Relative displacement of node :math:`\mathrm{NO1}` with Devogelaere's numerical integration algorithm: .. csv-table:: "**Time (s)**", "**Reference**" "2", "0.01" "6", "—0.01" "10", "0.01" "14", "—0.01" "18", "0.01"