Reference problem ===================== Geometry --------- The seismic response of a mass-spring system with a degree of freedom that can impact a fixed wall (problem 1) is compared to that of two identical mass-spring systems that can collide and subject to the same seismic stress (problem 2). +----------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ | | | + .. image:: images/Object_1.svg + .. image:: images/Object_2.svg + | :width: 226 | :width: 2.8043in | + :height: 96 + :height: 0.9874in + | | | + + + | | | +----------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ |**Problem 1** |**Problem 2** | +----------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ Material properties ----------------------- Spring stiffness: :math:`k=98696N/m`. Point mass: :math:`m=25\mathit{kg}`. For problem 1 (impact on a rigid wall), the normal shock stiffness is :math:`{K}_{\mathrm{choc}}=\mathrm{5,76}{10}^{7}N/m`. As for problem 2 (shock of two deformable structures), it is worth :math:`{K}_{\mathrm{choc}}=\mathrm{2,88}{10}^{7}N/m`. In both cases, shock absorption is zero. **For G modeling:** Spring stiffness: :math:`k=500N/m`. Point mass: :math:`m=15\mathit{kg}`. The table above gives the characteristics of material DIS_CHOC_ENDO. The stiffness under discharge is constant, the damping is zero. .. csv-table:: "Ux [m]", "Strength [N]", "Stiffness [N/m]", "Damping [N.s/m]" "0.00", "0.0", "2000.0", "0.0" "0.20", "400.0", "2000.0", "0.0" "0.50", "450.0", "2000.0", "0.0" "0.70", "400.0", "2000.0", "0.0" "0.95", "375.0", "2000.0", "0.0" "1.30", "350.0", "2000.0", "0.0" "1.60", "300.0", "2000.0", "0.0" "20.0", "300.0", "2000.0", "0.0" The figure below shows the behavior corresponding to the data. .. image:: images/1000020100000CC6000006654DFAFC3B70645267.png :width: 5.9055in :height: 2.9484in .. _RefImage_1000020100000CC6000006654DFAFC3B70645267.png: Boundary conditions and loads ------------------------------------- **Boundary conditions** The only authorized movements are translations according to axis :math:`x`. Points :math:`A`, :math:`B`, and :math:`C` are embedded: :math:`\mathrm{dx}=\mathrm{dy}=\mathrm{dz}=0`. **Loading** The anchor points :math:`A` and :math:`B` are subject to acceleration in the direction :math:`x`. Point C is subject to the opposite acceleration. * A to F models: :math:`{\gamma }_{1}(t)=\mathrm{sin}\omega t` with :math:`\omega =20.\pi {s}^{-1}` (:math:`{\gamma }_{2}(t)=-\mathrm{sin}\omega t` for point C). * G modeling: :math:`{\gamma }_{1}(t)=\alpha t\mathrm{sin}\omega t` with :math:`\omega =20.\pi {s}^{-1}` and :math:`\alpha =1E5`. Initial conditions -------------------- In both cases, the mass-spring systems are initially at rest: to :math:`t=0`, :math:`\mathrm{dx}(0)=0`, :math:`\mathrm{dx}/\mathrm{dt}(0)=0` in every way. For problem 1, the mass is separated from the fixed wall in game :math:`j=5.{10}^{-4}m`. As for problem 2, the masses are separate from game :math:`J=2j={10}^{-3}m`.