Reference problem ===================== Geometry --------- .. image:: images/100007B20000181500001AC5F6817B68E575AC1B.svg :width: 310 :height: 345 .. _RefImage_100007B20000181500001AC5F6817B68E575AC1B.svg: The hollow cylinder is assumed to be infinitely long. Material properties ----------------------- Only the conductivity coefficient is involved. The*Code_Aster* makes it mandatory to provide a function representing the volume enthalpy determined from the density heat coefficient. Volume heat :math:`\rho {C}_{P}=1.00J/{m}^{3}°C` thermal conductivity :math:`k=40W/{m}^{3}°C` Boundary conditions and loads ------------------------------------- Radiation-type condition on the inner surface of the cylinder, convection-type condition (exchange with the external environment) on the outer surface. No boundary conditions on the ends of the cylinder (which amounts to imposing a zero flow). Inner surface :math:`k\frac{\partial T}{\partial n}=\varepsilon \sigma [{(T+273.15)}^{4}-{({T}_{\mathrm{ext}}^{i}+273.15)}^{4}]` with :math:`\varepsilon =0.6`, :math:`\sigma =5.73{10}^{-8}W/{m}^{2}{K}^{4}` and :math:`{T}_{\mathrm{ext}}^{i}=500.°C`, :math:`T` in Celsius External surface :math:`k\frac{\partial T}{\partial n}={h}_{e}[{T}_{\mathrm{ext}}^{e}-T]` with :math:`{h}_{e}=142.W/{m}^{2}°C` and :math:`{T}_{\mathrm{ext}}^{e}=20.°C`