1. Reference problem#

1.1. Geometry#

A quarter of the prismatic sample in \(70\times 70\times 280\mathrm{mm}\) is considered.

1.2. Material properties#

In the drying equation:

\(\frac{\mathrm{dC}}{\mathrm{dt}}-\text{div}\left[D(C,T)\mathrm{grad}C\right]=0\)

the diffusion coefficient \(D\) will be of the form SECH_GRANGER:

\(D(C,T)=A\mathrm{exp}(\mathrm{BC})\frac{T}{{T}_{0}}\mathrm{exp}\left[-{\mathrm{QSR}}_{K}(\frac{1}{T}-\frac{1}{{T}_{0}})\right]\)

  • \(A\mathrm{=}\mathrm{2,5}{10}^{\mathrm{-}11}{m}^{2}\mathrm{/}h\)

  • \(B\mathrm{=}0.12\)

  • \({T}_{0}\mathrm{=}273°K\)

1.3. Boundary conditions and loads#

Uniform and constant temperature field over time of \(20°C\)

Concentration imposed on the banks of \({C}_{\mathit{eq}}\mathrm{=}\mathrm{29,31}l\mathrm{/}{m}^{3}\)

1.4. Initial conditions#

The initial water concentration is \({C}_{\mathit{eq}}\mathrm{=}\mathrm{106,42}l\mathrm{/}{m}^{3}\)

1.5. Transitional#

Drying is calculated over a period of \(528h\).