1. Reference problem#
1.1. Geometry#
A quarter of the prismatic sample in \(70\times 70\times 280\mathrm{mm}\) is considered.
1.2. Material properties#
In the drying equation:
\(\frac{\mathrm{dC}}{\mathrm{dt}}-\text{div}\left[D(C,T)\mathrm{grad}C\right]=0\)
the diffusion coefficient \(D\) will be of the form SECH_GRANGER:
\(D(C,T)=A\mathrm{exp}(\mathrm{BC})\frac{T}{{T}_{0}}\mathrm{exp}\left[-{\mathrm{QSR}}_{K}(\frac{1}{T}-\frac{1}{{T}_{0}})\right]\)
\(A\mathrm{=}\mathrm{2,5}{10}^{\mathrm{-}11}{m}^{2}\mathrm{/}h\)
\(B\mathrm{=}0.12\)
\({T}_{0}\mathrm{=}273°K\)
1.3. Boundary conditions and loads#
Uniform and constant temperature field over time of \(20°C\)
Concentration imposed on the banks of \({C}_{\mathit{eq}}\mathrm{=}\mathrm{29,31}l\mathrm{/}{m}^{3}\)
1.4. Initial conditions#
The initial water concentration is \({C}_{\mathit{eq}}\mathrm{=}\mathrm{106,42}l\mathrm{/}{m}^{3}\)
1.5. Transitional#
Drying is calculated over a period of \(528h\).