Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- :math:`T(x,y,z,t)={T}_{0}+{\mathrm{2q}}_{w}\frac{\sqrt{\alpha t}}{\lambda }(A+B+C)` with: :math:`A=\sum _{m=0}^{\infty }\left[\mathrm{i.erfc}\left[\frac{(\mathrm{2m}-1){L}_{1}+x}{2\sqrt{\alpha t}}\right]+\mathrm{i.erfc}\left[\frac{(\mathrm{2m}-1){L}_{1}-x}{2\sqrt{\alpha t}}\right]\right]` :math:`B=\sum _{m=0}^{\infty }\left[\mathrm{i.erfc}\left[\frac{(\mathrm{2m}-1){L}_{2}+y}{2\sqrt{\alpha t}}\right]+\mathrm{i.erfc}\left[\frac{(\mathrm{2m}-1){L}_{2}-y}{2\sqrt{\alpha t}}\right]\right]` :math:`C=\sum _{m=0}^{\infty }\left[\mathrm{i.erfc}\left[\frac{(\mathrm{2m}-1){L}_{3}+z}{2\sqrt{\alpha t}}\right]+\mathrm{i.erfc}\left[\frac{(\mathrm{2m}-1){L}_{3}-z}{2\sqrt{\alpha t}}\right]\right]` :math:`\alpha =\frac{\lambda }{\rho {C}_{p}}` Reference values are obtained with :math:`m=1000.` Benchmark results ---------------------- Temperature at points: :math:`O(\mathrm{0,0}\mathrm{,0})`, :math:`H(0.5\mathrm{,0}.8\mathrm{,1}\mathrm{.})` and :math:`C(1.\mathrm{,1}.6\mathrm{,2}\mathrm{.})` Uncertainty about the solution --------------------------- Analytical solution. Bibliographical references --------------------------- * M.J. Chang, L.C. Chow, W.S. Chang, "Improved alternating direction implicit for solving transient three dimensional heat diffusion problems", Numerical Heat Transfer, vol. 19, vol. 19, pp 69-84, 1991.