2. Benchmark solution#
2.1. Calculation method used for the reference solution#
\(T(x,y,t)=\sum _{n=1}^{\infty }\sum _{j=1}^{\infty }{B}_{n}\mathrm{cos}\frac{(\mathrm{2n}-1)\pi x}{2{L}_{x}}\mathrm{sin}\frac{j\pi y}{{L}_{y}}\mathrm{exp}\left[-(\frac{{\lambda }_{x}{(\mathrm{2n}-1)}^{2}{\pi }^{2}}{4{L}_{x}^{2}}+\frac{{\lambda }_{y}{j}^{2}{\pi }^{2}}{{L}_{y}^{2}})t\right]\)
where \({B}_{n}=\left[\frac{8{T}_{i}}{{\pi }^{2}j(\mathrm{2n}-1)}{(-1)}^{n+2}[{(-1)}^{j}-1]-32\right]\frac{5}{9}\) \({T}_{i}=\frac{5}{9}{T}_{0}+32\)
Temperature in \(°F\) to \(t=1.2\mathrm{hr}(\mathrm{4320s})\) |
||||||||||
2.7 |
—15,6151 |
—15,6480 |
—15,7455 |
—15,9049 |
—16, 1211 |
—16,3876 |
—16,6964 |
— 17,0381 |
—17,4022 |
—17,7778 |
2.4 |
— 15,6462 |
—15,6786 |
—15,7748 |
—15,9318 |
—16, 1449 |
—16,4076 |
—16.7120 |
—17,0487 |
—17,4076 |
—17,7778 |
2.1 |
—15,7391 |
—15,7700 |
—15,8620 |
—16.0122 |
—16,2160 |
—16,4673 |
—16,7584 |
—17,0805 |
— 17.4238 |
—17,7778 |
1.8 |
—15,8921 |
—15,9208 |
—16.0058 |
—16, 1447 |
—16,3333 |
—16,5657 |
—16,8349 |
—17,1328 |
—17,4503 |
—17,7778 |
1.5 |
—16, 1025 |
—16,1279 |
—16,2035 |
—16, 3269 |
—16,4944 |
—16,7009 |
—16,9401 |
—17,2048 |
—17,4869 |
—17,7778 |
1.2 |
—16,3655 |
—16,3869 |
—16,4506 |
—16,5547 |
—16,6959 |
—16,8700 |
—17.0716 |
—17.2947 |
—17.5325 |
—17,7778 |
0.9 |
—16,6744 |
—16,6911 |
—16,7409 |
—16.8222 |
—16,9325 |
— 17,0685 |
— 17,2261 |
—17,4004 |
—17,5862 |
—17,7778 |
0.6 |
— 17,0203 |
—17,0318 |
—17.0660 |
—17,1218 |
—17, 1975 |
— 17,2909 |
—17,3991 |
—17.5187 |
— 17.6462 |
—17,7778 |
0.3 |
—17,3923 |
—17,3982 |
—17.4156 |
—17.4440 |
—17.4825 |
— 17.5300 |
—17,5851 |
— 17.6459 |
—17.7108 |
—17,7778 |
0.0 |
—17,7778 |
—17,7778 |
—17,7778 |
—17,7778 |
—17,7778 |
—17,7778 |
—17,7778 |
—17,7778 |
—17,7778 |
—17,7778 |
\(Y\uparrow\) \(X\to\) |
0.0 |
0.3 |
0.6 |
0.9 |
1.2 |
1.5 |
1.8 |
2.1 |
2.4 |
2.7 |
Reference values are obtained with \(n=j=1000\)
2.2. Benchmark results#
\(t=\mathrm{1.2hr}(\mathrm{4320s})\): temperature at the following points:
in \(x=0.0\): for \(y=0.6,1.5,2.7\),
in \(x=0.9\): for \(y=0.6,1.5,2.7\),
in \(x=1.8\): for \(y=0.6,1.5,2.7\).
2.3. Uncertainty about the solution#
Analytical solution.
2.4. Bibliographical references#
J.C. Bruch Jr., G. Zyroloski, “Transient two-dimensional heat conduction problems solved by the finite element method”, Int. J. num. Meth. Engng, vol. 8, no. 3, pp 481-494, 1974.