D modeling ============== In this modeling, the extended finite element method (X- FEM) is used. Characteristics of modeling ------------------------ We use the 3D modeling of the THERMIQUE phenomenon. Characteristics of the mesh ---------------------------- The structure is modelled by a :math:`\mathrm{3D}` mesh composed of :math:`25984` HEXA8. The crack is not meshed. .. image:: images/1000000000000300000002EDA42FF011694F5618.png :width: 3.9366in :height: 3.839in .. _RefImage_1000000000000300000002EDA42FF011694F5618.png: Figure 6.2-1: D mesh Tested sizes and results ------------------------------ We test the temperature at the end of the last time step (:math:`t=1\text{.}s`) at nodes :math:`{P}^{\text{+}}(0)` and :math:`{P}^{\text{-}}(\pi \mathrm{/}4)` (see Figure). To do this, the temperature field is tested after using operators POST_MAIL_XFEM and POST_CHAM_XFEM. .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" "Point :math:`{P}^{\text{+}}(\pi \mathrm{/}4)` - :math:`\mathit{TEMP}` ", "'AUTRE_ASTER'", ":math:`\mathrm{23,559884847913}°C` ", "1. %" "Point :math:`{P}^{\text{-}}(\pi \mathrm{/}4)` - :math:`\mathit{TEMP}` ", "'AUTRE_ASTER'", ":math:`\mathrm{15,592470476233}°C` ", "1. %"