3. Modeling A#

3.1. Characteristics of modeling#

We use a DKT model with 3 layers in the thickness.

3.2. Characteristics of the mesh#

The mesh contains 2048 elements of type TRIA3.

3.3. Tested sizes and results#

Stress is tested on the lower, middle and upper skin in two layers.

  • Layer 1: \(\mathrm{-}\mathrm{0.05m}<Z<\mathrm{-}0.0167m\)

Identification

Reference type

Reference value

Tolerance

\(\mathit{INF}\)

\(X\mathrm{=}\mathrm{0.0m}\) \(Y\mathrm{=}\mathrm{0.0m}\) \(Z\mathrm{=}\mathrm{-}\mathrm{0.05m}\)

\(\mathit{SIXX}\)

“ANALYTIQUE”

\(10.\)

\(2.0\text{\%}\)

\(\mathit{SIYY}\)

“ANALYTIQUE”

\(0.\)

\(0.6\)

\(\mathit{SIXY}\)

“ANALYTIQUE”

\(0.\)

\(0.05\)

\(\mathit{MOY}\)

\(X\mathrm{=}\mathrm{0.0m}\) \(Y\mathrm{=}\mathrm{1.0m}\) \(Z\mathrm{=}\mathrm{-}\mathrm{0.0333m}\)

\(\mathit{SIXX}\)

“ANALYTIQUE”

\(0.\)

\(0.05\)

\(\mathit{SIYY}\)

“ANALYTIQUE”

\(0.\)

\(0.2\)

\(\mathit{SIXY}\)

“ANALYTIQUE”

\(0.\)

\(0.0035\)

\(\text{SUP}\)

\(X\mathrm{=}\mathrm{0.0m}\) \(Y\mathrm{=}\mathrm{2.0m}\) \(Z\mathrm{=}\mathrm{-}\mathrm{0.0167m}\)

\(\mathit{SIXX}\)

“ANALYTIQUE”

\(\mathrm{-}10.\)

\(1.5\text{\%}\)

\(\mathit{SIYY}\)

“ANALYTIQUE”

\(0.\)

\(0.5\)

\(\mathit{SIXY}\)

“ANALYTIQUE”

\(0.\)

\({10}^{\mathrm{-}6}\)

  • Layer #3: \(\mathrm{0.0167m}<Z<\mathrm{0.05m}\)

Identification

Reference type

Reference value

Tolerance

\(\mathit{INF}\)

\(X\mathrm{=}\mathrm{4.0m}\) \(Y\mathrm{=}\mathrm{0.0m}\) \(Z\mathrm{=}\mathrm{0.0167m}\)

\(\mathit{SIXX}\)

“ANALYTIQUE”

\(10.\)

\(1.5\text{\%}\)

\(\mathit{SIYY}\)

“ANALYTIQUE”

\(0.\)

\(0.5\)

\(\mathit{SIXY}\)

“ANALYTIQUE”

\(0.\)

\({10}^{\mathrm{-}4}\)

\(\mathit{MOY}\)

\(X\mathrm{=}\mathrm{4.0m}\) \(Y\mathrm{=}\mathrm{1.0m}\) \(Z\mathrm{=}\mathrm{0.0333m}\)

\(\mathit{SIXX}\)

“ANALYTIQUE”

\(0.\)

\({10}^{\mathrm{-}4}\)

\(\mathit{SIYY}\)

“ANALYTIQUE”

\(0.\)

\({10}^{\mathrm{-}4}\)

\(\mathit{SIXY}\)

“ANALYTIQUE”

\(0.\)

\({10}^{\mathrm{-}3}\)

\(\text{SUP}\)

\(X\mathrm{=}\mathrm{4.0m}\) \(Y\mathrm{=}\mathrm{2.0m}\) \(Z\mathrm{=}\mathrm{0.05m}\)

\(\mathit{SIXX}\)

“ANALYTIQUE”

\(\mathrm{-}10.\)

\(1.5\text{\%}\)

\(\mathit{SIYY}\)

“ANALYTIQUE”

\(0.\)

\(0.5\)

\(\mathit{SIXY}\)

“ANALYTIQUE”

\(0.\)

\({10}^{\mathrm{-}4}\)