Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- * Elastostatic problem :math:`V` electrical potential In volume :math:`\Delta V=0.` Boundary conditions NEUMANN :math:`\{\begin{array}{cc}\mathrm{j.n}=0.& \text{sur}\mathrm{CD}\text{et}\mathrm{AB}\\ \mathrm{j.n}=-10.& \text{sur}\mathrm{AD}\\ \mathrm{j.n}=3.6787944& \text{sur}\mathrm{BC}\end{array}` electrical conductivity :math:`\sigma =1.` :math:`j\mathrm{.}n=-\sigma \nabla V` Axisymmetric solution :math:`\frac{1}{r}\frac{\partial }{\partial r}(r\frac{\partial V}{\partial r})=0\Rightarrow V={V}_{0}\mathrm{log}\frac{r}{A}` The boundary conditions on :math:`\mathrm{AD}` and :math:`\mathrm{BC}` require: :math:`{V}_{0}=10.` Note: *Knowledge of* :math:`A` *is not required for thermal calculation.* * Thermal problem :math:`T` temperature :math:`-\lambda \Delta T=s` with a :math:`s=\sigma {(\nabla V)}^{2}` volume source Boundary conditions: :math:`T=0.` on :math:`\mathrm{DA}` and :math:`\mathrm{BC}` :math:`-\lambda \nabla T\mathrm{.}n=0` out of :math:`\mathrm{DC}` and :math:`\mathrm{AB}` Axisymmetric solution: :math:`\frac{1}{r}\frac{\partial }{\partial r}(r\frac{\partial T}{\partial r})=-\frac{\sigma }{1}\frac{{v}_{0}^{2}}{{r}^{2}}` :math:`\Rightarrow` considering boundary conditions :math:`T(r)\mathrm{=}\mathrm{-}\frac{1}{2}\sigma \frac{{v}_{0}^{2}}{\lambda }\mathrm{log}(\frac{r}{{R}_{0}})\mathrm{log}(\frac{r}{{R}_{1}})` Benchmark results ---------------------- :math:`T=588.9313°C` (temperature at point :math:`M`). Uncertainty about the solution --------------------------- Analytical solution.